BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2163270)

  • 1. Effect of erythrocyte transbilayer phospholipid distribution on fusion with vesicular stomatitis virus.
    Herrmann A; Clague MJ; Puri A; Morris SJ; Blumenthal R; Grimaldi S
    Biochemistry; 1990 May; 29(17):4054-8. PubMed ID: 2163270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of target membrane structure in fusion with influenza virus: effect of modulating erythrocyte transbilayer phospholipid distribution.
    Herrmann A; Clague MJ; Blumenthal R
    Membr Biochem; 1993; 10(1):3-15. PubMed ID: 8510561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of octadecylrhodamine fluorescence dequenching to study vesicular stomatitis virus fusion with human aged red blood cells.
    Pozzi D; Lisi A; De Ros I; Ferroni L; Giuliani A; Ravagnan G; Grimaldi S
    Photochem Photobiol; 1993 Mar; 57(3):426-30. PubMed ID: 8386384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gating kinetics of pH-activated membrane fusion of vesicular stomatitis virus with cells: stopped-flow measurements by dequenching of octadecylrhodamine fluorescence.
    Clague MJ; Schoch C; Zech L; Blumenthal R
    Biochemistry; 1990 Feb; 29(5):1303-8. PubMed ID: 2157487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of phospholipid asymmetry in calcium-phosphate-induced fusion of human erythrocytes.
    Schewe M; Müller P; Korte T; Herrmann A
    J Biol Chem; 1992 Mar; 267(9):5910-5. PubMed ID: 1556105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicular stomatitis virus binds and fuses with phospholipid domain in target cell membranes.
    Yamada S; Ohnishi S
    Biochemistry; 1986 Jun; 25(12):3703-8. PubMed ID: 3013294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes.
    Seigneuret M; Devaux PF
    Proc Natl Acad Sci U S A; 1984 Jun; 81(12):3751-5. PubMed ID: 6587389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH.
    Mastromarino P; Conti C; Goldoni P; Hauttecoeur B; Orsi N
    J Gen Virol; 1987 Sep; 68 ( Pt 9)():2359-69. PubMed ID: 2821175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane recognition by vesicular stomatitis virus involves enthalpy-driven protein-lipid interactions.
    Carneiro FA; Bianconi ML; Weissmüller G; Stauffer F; Da Poian AT
    J Virol; 2002 Apr; 76(8):3756-64. PubMed ID: 11907215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion between enveloped viruses and erythrocyte membranes is induced by the isoprenoid alkane pristane (2,6,10,14-tetramethylpentadecane).
    Janz S; Shacter E; Herrmann A
    Cancer Biochem Biophys; 1994 Apr; 14(1):1-14. PubMed ID: 7796384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of transbilayer phospholipid distribution on erythrocyte fusion.
    Tullius EK; Williamson P; Schlegel RA
    Biosci Rep; 1989 Oct; 9(5):623-33. PubMed ID: 2804262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational changes and fusion activity of vesicular stomatitis virus glycoprotein: [125I]iodonaphthyl azide photolabeling studies in biological membranes.
    Pak CC; Puri A; Blumenthal R
    Biochemistry; 1997 Jul; 36(29):8890-6. PubMed ID: 9220976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sendai virus fusion activity as modulated by target membrane components.
    Nunes-Correia I; Ramalho-Santos J; Pedroso de Lima MC
    Biosci Rep; 1998 Apr; 18(2):59-68. PubMed ID: 9743474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrene phospholipid as a biological fluorescent probe for studying fusion of virus membrane with liposomes.
    Pal R; Barenholz Y; Wagner RR
    Biochemistry; 1988 Jan; 27(1):30-6. PubMed ID: 2831956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilayer/cytoskeleton interactions in lipid-symmetric erythrocytes assessed by a photoactivable phospholipid analogue.
    Pradhan D; Williamson P; Schlegel RA
    Biochemistry; 1991 Aug; 30(31):7754-8. PubMed ID: 1868052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution of erythrocyte phospholipids in hereditary spherocytosis demonstrates a minimal role for erythrocyte spectrin on phospholipid diffusion and asymmetry.
    Kuypers FA; Lubin BH; Yee M; Agre P; Devaux PF; Geldwerth D
    Blood; 1993 Feb; 81(4):1051-7. PubMed ID: 8427987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamine inhibition of transbilayer movement of plasma membrane phospholipids in the erythrocyte ghost.
    Bratton DL
    J Biol Chem; 1994 Sep; 269(36):22517-23. PubMed ID: 8077200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane phospholipid asymmetry as a factor in erythrocyte-endothelial cell interactions.
    Schlegel RA; Prendergast TW; Williamson P
    J Cell Physiol; 1985 May; 123(2):215-8. PubMed ID: 3980587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of viral envelope sialic acid in membrane fusion mediated by the vesicular stomatitis virus envelope glycoprotein.
    Puri A; Grimaldi S; Blumenthal R
    Biochemistry; 1992 Oct; 31(41):10108-13. PubMed ID: 1327132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric lateral mobility of phospholipids in the human erythrocyte membrane.
    Morrot G; Cribier S; Devaux PF; Geldwerth D; Davoust J; Bureau JF; Fellmann P; Herve P; Frilley B
    Proc Natl Acad Sci U S A; 1986 Sep; 83(18):6863-7. PubMed ID: 3462734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.