These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21632924)

  • 1. Visual experience-dependent maturation of correlated neuronal activity patterns in a developing visual system.
    Xu H; Khakhalin AS; Nurmikko AV; Aizenman CD
    J Neurosci; 2011 Jun; 31(22):8025-36. PubMed ID: 21632924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of radial glial motility by visual experience.
    Tremblay M; Fugère V; Tsui J; Schohl A; Tavakoli A; Travençolo BA; Costa Lda F; Ruthazer ES
    J Neurosci; 2009 Nov; 29(45):14066-76. PubMed ID: 19906955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner.
    Gambrill AC; Faulkner RL; McKeown CR; Cline HT
    J Neurophysiol; 2019 Jan; 121(1):306-320. PubMed ID: 30517041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum.
    Dong W; Lee RH; Xu H; Yang S; Pratt KG; Cao V; Song YK; Nurmikko A; Aizenman CD
    J Neurophysiol; 2009 Feb; 101(2):803-15. PubMed ID: 19073807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of axon branch dynamics by correlated activity in vivo.
    Ruthazer ES; Akerman CJ; Cline HT
    Science; 2003 Jul; 301(5629):66-70. PubMed ID: 12843386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs.
    Pietri T; Romano SA; Pérez-Schuster V; Boulanger-Weill J; Candat V; Sumbre G
    Cell Rep; 2017 May; 19(5):939-948. PubMed ID: 28467907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection.
    Aizenman CD; Cline HT
    J Neurophysiol; 2007 Apr; 97(4):2949-57. PubMed ID: 17267761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons.
    Engert F; Tao HW; Zhang LI; Poo MM
    Nature; 2002 Oct; 419(6906):470-5. PubMed ID: 12368854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles.
    Khakhalin AS; Koren D; Gu J; Xu H; Aizenman CD
    Eur J Neurosci; 2014 Sep; 40(6):2948-62. PubMed ID: 24995793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Activity-Dependent Regulation of Radial Glial Filopodial Motility Is Mediated by Glial cGMP-Dependent Protein Kinase 1 and Contributes to Synapse Maturation in the Developing Visual System.
    Sild M; Van Horn MR; Schohl A; Jia D; Ruthazer ES
    J Neurosci; 2016 May; 36(19):5279-88. PubMed ID: 27170125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles.
    Gambrill AC; Faulkner RL; Cline HT
    J Neurophysiol; 2018 May; 119(5):1947-1961. PubMed ID: 29442555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog.
    Svirskis G; Svirskiene N; Gutmaniene N
    J Neurosci Methods; 2009 May; 180(1):22-8. PubMed ID: 19427525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual Experience Facilitates BDNF-Dependent Adaptive Recruitment of New Neurons in the Postembryonic Optic Tectum.
    Hall ZJ; Tropepe V
    J Neurosci; 2018 Feb; 38(8):2000-2014. PubMed ID: 29363581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visuospatial information in the retinotectal system of xenopus before correct image formation by the developing eye.
    Richards BA; van Rheede JJ; Akerman CJ
    Dev Neurobiol; 2012 Apr; 72(4):507-19. PubMed ID: 21721138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A competition-based mechanism mediates developmental refinement of tectal neuron receptive fields.
    Dong W; Aizenman CD
    J Neurosci; 2012 Nov; 32(47):16872-9. PubMed ID: 23175839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversal and stabilization of synaptic modifications in a developing visual system.
    Zhou Q; Tao HW; Poo MM
    Science; 2003 Jun; 300(5627):1953-7. PubMed ID: 12817152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and spike timing-dependent plasticity of recurrent excitation in the Xenopus optic tectum.
    Pratt KG; Dong W; Aizenman CD
    Nat Neurosci; 2008 Apr; 11(4):467-75. PubMed ID: 18344990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. I. Normal maturational changes in response to changing binocular geometry.
    Grant S; Keating MJ
    Exp Brain Res; 1989; 75(1):99-116. PubMed ID: 2707359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.