These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 21632965)
1. Physiologically based pharmacokinetic modeling of intestinal first-pass metabolism of CYP3A substrates with high intestinal extraction. Gertz M; Houston JB; Galetin A Drug Metab Dispos; 2011 Sep; 39(9):1633-42. PubMed ID: 21632965 [TBL] [Abstract][Full Text] [Related]
2. Application of PBPK modeling to predict human intestinal metabolism of CYP3A substrates - an evaluation and case study using GastroPlus. Heikkinen AT; Baneyx G; Caruso A; Parrott N Eur J Pharm Sci; 2012 Sep; 47(2):375-86. PubMed ID: 22759901 [TBL] [Abstract][Full Text] [Related]
3. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Gertz M; Harrison A; Houston JB; Galetin A Drug Metab Dispos; 2010 Jul; 38(7):1147-58. PubMed ID: 20368326 [TBL] [Abstract][Full Text] [Related]
4. Prediction of the intestinal first-pass metabolism of CYP3A and UGT substrates in humans from in vitro data. Nishimuta H; Sato K; Yabuki M; Komuro S Drug Metab Pharmacokinet; 2011; 26(6):592-601. PubMed ID: 21878741 [TBL] [Abstract][Full Text] [Related]
5. Prediction of the intestinal first-pass metabolism of CYP3A substrates in humans using cynomolgus monkeys. Nishimuta H; Sato K; Mizuki Y; Yabuki M; Komuro S Drug Metab Dispos; 2010 Nov; 38(11):1967-75. PubMed ID: 20702772 [TBL] [Abstract][Full Text] [Related]
6. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates. Fenneteau F; Poulin P; Nekka F J Pharm Sci; 2010 Jan; 99(1):486-514. PubMed ID: 19479982 [TBL] [Abstract][Full Text] [Related]
7. Prediction of human drug clearance by multiple metabolic pathways: integration of hepatic and intestinal microsomal and cytosolic data. Cubitt HE; Houston JB; Galetin A Drug Metab Dispos; 2011 May; 39(5):864-73. PubMed ID: 21303923 [TBL] [Abstract][Full Text] [Related]
8. The effect of age, sex, and rifampin administration on intestinal and hepatic cytochrome P450 3A activity. Gorski JC; Vannaprasaht S; Hamman MA; Ambrosius WT; Bruce MA; Haehner-Daniels B; Hall SD Clin Pharmacol Ther; 2003 Sep; 74(3):275-87. PubMed ID: 12966371 [TBL] [Abstract][Full Text] [Related]
9. Intravenous and oral alfentanil as in vivo probes for hepatic and first-pass cytochrome P450 3A activity: noninvasive assessment by use of pupillary miosis. Kharasch ED; Walker A; Hoffer C; Sheffels P Clin Pharmacol Ther; 2004 Nov; 76(5):452-66. PubMed ID: 15536460 [TBL] [Abstract][Full Text] [Related]
10. Commentary: theoretical predictions of flow effects on intestinal and systemic availability in physiologically based pharmacokinetic intestine models: the traditional model, segregated flow model, and QGut model. Pang KS; Chow EC Drug Metab Dispos; 2012 Oct; 40(10):1869-77. PubMed ID: 22745334 [TBL] [Abstract][Full Text] [Related]
11. Quantitative prediction of human intestinal glucuronidation effects on intestinal availability of UDP-glucuronosyltransferase substrates using in vitro data. Nakamori F; Naritomi Y; Hosoya K; Moriguchi H; Tetsuka K; Furukawa T; Kadono K; Yamano K; Terashita S; Teramura T Drug Metab Dispos; 2012 Sep; 40(9):1771-7. PubMed ID: 22685216 [TBL] [Abstract][Full Text] [Related]
12. Pharmacokinetics and first-pass elimination of metoprolol in rats: contribution of intestinal first-pass extraction to low bioavailability of metoprolol. Yoon IS; Choi MK; Kim JS; Shim CK; Chung SJ; Kim DD Xenobiotica; 2011 Mar; 41(3):243-51. PubMed ID: 21128757 [TBL] [Abstract][Full Text] [Related]
13. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Gorski JC; Jones DR; Haehner-Daniels BD; Hamman MA; O'Mara EM; Hall SD Clin Pharmacol Ther; 1998 Aug; 64(2):133-43. PubMed ID: 9728893 [TBL] [Abstract][Full Text] [Related]
14. Prediction of human pharmacokinetics--improving microsome-based predictions of hepatic metabolic clearance. Fagerholm U J Pharm Pharmacol; 2007 Oct; 59(10):1427-31. PubMed ID: 17910819 [TBL] [Abstract][Full Text] [Related]
15. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. Paine MF; Khalighi M; Fisher JM; Shen DD; Kunze KL; Marsh CL; Perkins JD; Thummel KE J Pharmacol Exp Ther; 1997 Dec; 283(3):1552-62. PubMed ID: 9400033 [TBL] [Abstract][Full Text] [Related]
16. Utility of in vitro systems and preclinical data for the prediction of human intestinal first-pass metabolism during drug discovery and preclinical development. Karlsson FH; Bouchene S; Hilgendorf C; Dolgos H; Peters SA Drug Metab Dispos; 2013 Dec; 41(12):2033-46. PubMed ID: 23918667 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory effect of docosahexaenoic acid (DHA) on the intestinal metabolism of midazolam: in vitro and in vivo studies in rats. Hirunpanich V; Murakoso K; Sato H Int J Pharm; 2008 Mar; 351(1-2):133-43. PubMed ID: 18082981 [TBL] [Abstract][Full Text] [Related]
18. A comparison of pharmacokinetics between humans and monkeys. Akabane T; Tabata K; Kadono K; Sakuda S; Terashita S; Teramura T Drug Metab Dispos; 2010 Feb; 38(2):308-16. PubMed ID: 19910513 [TBL] [Abstract][Full Text] [Related]
19. A mechanistic physiologically based pharmacokinetic-enzyme turnover model involving both intestine and liver to predict CYP3A induction-mediated drug-drug interactions. Guo H; Liu C; Li J; Zhang M; Hu M; Xu P; Liu L; Liu X J Pharm Sci; 2013 Aug; 102(8):2819-36. PubMed ID: 23760985 [TBL] [Abstract][Full Text] [Related]
20. Application of semisimultaneous midazolam administration for hepatic and intestinal cytochrome P450 3A phenotyping. Lee JI; Chaves-Gnecco D; Amico JA; Kroboth PD; Wilson JW; Frye RF Clin Pharmacol Ther; 2002 Dec; 72(6):718-28. PubMed ID: 12496753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]