These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 21633020)
1. Climate variability and the outbreaks of cholera in Zanzibar, East Africa: a time series analysis. Reyburn R; Kim DR; Emch M; Khatib A; von Seidlein L; Ali M Am J Trop Med Hyg; 2011 Jun; 84(6):862-9. PubMed ID: 21633020 [TBL] [Abstract][Full Text] [Related]
2. Time series analysis of cholera in Matlab, Bangladesh, during 1988-2001. Ali M; Kim DR; Yunus M; Emch M J Health Popul Nutr; 2013 Mar; 31(1):11-9. PubMed ID: 23617200 [TBL] [Abstract][Full Text] [Related]
3. Climate and cholera in KwaZulu-Natal, South Africa: the role of environmental factors and implications for epidemic preparedness. Mendelsohn J; Dawson T Int J Hyg Environ Health; 2008 Mar; 211(1-2):156-62. PubMed ID: 17383231 [TBL] [Abstract][Full Text] [Related]
4. Influence of temperature and rainfall on the evolution of cholera epidemics in Lusaka, Zambia, 2003-2006: analysis of a time series. Luque Fernández MA; Bauernfeind A; Jiménez JD; Gil CL; El Omeiri N; Guibert DH Trans R Soc Trop Med Hyg; 2009 Feb; 103(2):137-43. PubMed ID: 18783808 [TBL] [Abstract][Full Text] [Related]
5. Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. Gharbi M; Quenel P; Gustave J; Cassadou S; La Ruche G; Girdary L; Marrama L BMC Infect Dis; 2011 Jun; 11():166. PubMed ID: 21658238 [TBL] [Abstract][Full Text] [Related]
6. Cholera in Cameroon, 2000-2012: Spatial and Temporal Analysis at the Operational (Health District) and Sub Climate Levels. Ngwa MC; Liang S; Kracalik IT; Morris L; Blackburn JK; Mbam LM; Ba Pouth SF; Teboh A; Yang Y; Arabi M; Sugimoto JD; Morris JG PLoS Negl Trop Dis; 2016 Nov; 10(11):e0005105. PubMed ID: 27855171 [TBL] [Abstract][Full Text] [Related]
7. Developing a forecasting model for cholera incidence in Dhaka megacity through time series climate data. Daisy SS; Saiful Islam AKM; Akanda AS; Faruque ASG; Amin N; Jensen PKM J Water Health; 2020 Apr; 18(2):207-223. PubMed ID: 32300093 [TBL] [Abstract][Full Text] [Related]
8. Cholera outbreak in Senegal in 2005: was climate a factor? de Magny GC; Thiaw W; Kumar V; Manga NM; Diop BM; Gueye L; Kamara M; Roche B; Murtugudde R; Colwell RR PLoS One; 2012; 7(8):e44577. PubMed ID: 22952995 [TBL] [Abstract][Full Text] [Related]
9. The Epidemiology of Cholera in Zanzibar: Implications for the Zanzibar Comprehensive Cholera Elimination Plan. Bi Q; Abdalla FM; Masauni S; Reyburn R; Msambazi M; Deglise C; von Seidlein L; Deen J; Jiddawi MS; Olson D; Nemes I; Taib JA; Lessler J; Andemichael GR; Azman AS J Infect Dis; 2018 Oct; 218(suppl_3):S173-S180. PubMed ID: 30239836 [TBL] [Abstract][Full Text] [Related]
10. Developing a dengue prediction model based on climate in Tawau, Malaysia. Jayaraj VJ; Avoi R; Gopalakrishnan N; Raja DB; Umasa Y Acta Trop; 2019 Sep; 197():105055. PubMed ID: 31185224 [TBL] [Abstract][Full Text] [Related]
11. Impact of temperature variability on cholera incidence in southeastern Africa, 1971-2006. Paz S Ecohealth; 2009 Sep; 6(3):340-5. PubMed ID: 20039097 [TBL] [Abstract][Full Text] [Related]
12. Forecasting zoonotic cutaneous leishmaniasis using meteorological factors in eastern Fars province, Iran: a SARIMA analysis. Tohidinik HR; Mohebali M; Mansournia MA; Niakan Kalhori SR; Ali-Akbarpour M; Yazdani K Trop Med Int Health; 2018 Aug; 23(8):860-869. PubMed ID: 29790236 [TBL] [Abstract][Full Text] [Related]
13. Influence of relative humidity in Vibrio cholerae infection: a time series model. Rajendran K; Sumi A; Bhattachariya MK; Manna B; Sur D; Kobayashi N; Ramamurthy T Indian J Med Res; 2011 Feb; 133(2):138-45. PubMed ID: 21415487 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of cholera outbreaks in Great Lakes region of Africa, 1978-2008. Bompangue Nkoko D; Giraudoux P; Plisnier PD; Tinda AM; Piarroux M; Sudre B; Horion S; Tamfum JJ; Ilunga BK; Piarroux R Emerg Infect Dis; 2011 Nov; 17(11):2026-34. PubMed ID: 22099090 [TBL] [Abstract][Full Text] [Related]
15. Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models. Zhang Y; Bi P; Hiller J Int J Biometeorol; 2008 Jan; 52(3):179-87. PubMed ID: 17623111 [TBL] [Abstract][Full Text] [Related]
16. Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables. Campbell AM; Racault MF; Goult S; Laurenson A Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33333823 [TBL] [Abstract][Full Text] [Related]
17. Seasonality of cholera from 1974 to 2005: a review of global patterns. Emch M; Feldacker C; Islam MS; Ali M Int J Health Geogr; 2008 Jun; 7():31. PubMed ID: 18570659 [TBL] [Abstract][Full Text] [Related]
18. Regional-scale climate-variability synchrony of cholera epidemics in West Africa. Constantin de Magny G; Guégan JF; Petit M; Cazelles B BMC Infect Dis; 2007 Mar; 7():20. PubMed ID: 17371602 [TBL] [Abstract][Full Text] [Related]
19. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Escobar LE; Ryan SJ; Stewart-Ibarra AM; Finkelstein JL; King CA; Qiao H; Polhemus ME Acta Trop; 2015 Sep; 149():202-11. PubMed ID: 26048558 [TBL] [Abstract][Full Text] [Related]
20. Predicting malaria cases using remotely sensed environmental variables in Nkomazi, South Africa. Adeola AM; Botai JO; Mukarugwiza Olwoch J; De W Rautenbach HCJ; Adisa OM; De Jager C; Botai CM; Aaron M Geospat Health; 2019 May; 14(1):. PubMed ID: 31099518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]