BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 21633114)

  • 1. Reconciling gene and genome duplication events: using multiple nuclear gene families to infer the phylogeny of the aquatic plant family Pontederiaceae.
    Ness RW; Graham SW; Barrett SC
    Mol Biol Evol; 2011 Nov; 28(11):3009-18. PubMed ID: 21633114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is homoplasy or lineage sorting the source of incongruent mtdna and nuclear gene trees in the stiff-tailed ducks (Nomonyx-Oxyura)?
    McCracken K; Sorenson M
    Syst Biol; 2005 Feb; 54(1):35-55. PubMed ID: 15805009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the RNA polymerase B' subunit gene (rpoB') in Halobacteriales: a complementary molecular marker to the SSU rRNA gene.
    Walsh DA; Bapteste E; Kamekura M; Doolittle WF
    Mol Biol Evol; 2004 Dec; 21(12):2340-51. PubMed ID: 15356285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families.
    Pfeil BE; Schlueter JA; Shoemaker RC; Doyle JJ
    Syst Biol; 2005 Jun; 54(3):441-54. PubMed ID: 16012110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematics of the lizard family pygopodidae with implications for the diversification of Australian temperate biotas.
    Jennings WB; Pianka ER; Donnellan S
    Syst Biol; 2003 Dec; 52(6):757-80. PubMed ID: 14668116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods.
    McGowen MR; Clark C; Gatesy J
    Syst Biol; 2008 Aug; 57(4):574-90. PubMed ID: 18686195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The serine repeat antigen (SERA) gene family phylogeny in Plasmodium: the impact of GC content and reconciliation of gene and species trees.
    Bourgon R; Delorenzi M; Sargeant T; Hodder AN; Crabb BS; Speed TP
    Mol Biol Evol; 2004 Nov; 21(11):2161-71. PubMed ID: 15306658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of ancient molecular phylogeny.
    Guigó R; Muchnik I; Smith TF
    Mol Phylogenet Evol; 1996 Oct; 6(2):189-213. PubMed ID: 8899723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing the phylogenetic relationships of the earth's most diverse clade of freshwater fishes--order Cypriniformes (Actinopterygii: Ostariophysi): a case study using multiple nuclear loci and the mitochondrial genome.
    Mayden RL; Chen WJ; Bart HL; Doosey MH; Simons AM; Tang KL; Wood RM; Agnew MK; Yang L; Hirt MV; Clements MD; Saitoh K; Sado T; Miya M; Nishida M
    Mol Phylogenet Evol; 2009 Jun; 51(3):500-14. PubMed ID: 19141325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants.
    Volokita M; Rosilio-Brami T; Rivkin N; Zik M
    Mol Biol Evol; 2011 Jan; 28(1):551-65. PubMed ID: 20801908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate asymmetry after genome duplication causes substantial long-branch attraction artifacts in the phylogeny of Saccharomyces species.
    Fares MA; Byrne KP; Wolfe KH
    Mol Biol Evol; 2006 Feb; 23(2):245-53. PubMed ID: 16207937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications.
    Carretero-Paulet L; Fares MA
    Mol Biol Evol; 2012 Nov; 29(11):3541-51. PubMed ID: 22734049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular phylogeny of the Canidae based on six nuclear loci.
    Bardeleben C; Moore RL; Wayne RK
    Mol Phylogenet Evol; 2005 Dec; 37(3):815-31. PubMed ID: 16213754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling gene family evolution and reconciling phylogenetic discord.
    Szöllosi GJ; Daubin V
    Methods Mol Biol; 2012; 856():29-51. PubMed ID: 22399454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome duplication and gene-family evolution: the case of three OXPHOS gene families.
    De Grassi A; Lanave C; Saccone C
    Gene; 2008 Sep; 421(1-2):1-6. PubMed ID: 18573316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perils of paralogy: using HSP70 genes for inferring organismal phylogenies.
    Martin AP; Burg TM
    Syst Biol; 2002 Aug; 51(4):570-87. PubMed ID: 12228000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From phylogenetics to phylogenomics: the evolutionary relationships of insect endosymbiotic gamma-Proteobacteria as a test case.
    Comas I; Moya A; González-Candelas F
    Syst Biol; 2007 Feb; 56(1):1-16. PubMed ID: 17366133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-copy nuclear genes recover cretaceous-age divergences in bees.
    Danforth BN; Brady SG; Sipes SD; Pearson A
    Syst Biol; 2004 Apr; 53(2):309-26. PubMed ID: 15205055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene trees, species trees, and morphology converge on a similar phylogeny of living gars (Actinopterygii: Holostei: Lepisosteidae), an ancient clade of ray-finned fishes.
    Wright JJ; David SR; Near TJ
    Mol Phylogenet Evol; 2012 Jun; 63(3):848-56. PubMed ID: 22445447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.