These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21633190)

  • 41. Cation Chelating Agents Affect Leaf Movement via Leakage and not by Inhibition of Contractile Proteins).
    Mayer WE; Flach D; Wiech E
    J Plant Physiol; 1985 Feb; 118(1):79-90. PubMed ID: 23195933
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation.
    Moshelion M; Becker D; Biela A; Uehlein N; Hedrich R; Otto B; Levi H; Moran N; Kaldenhoff R
    Plant Cell; 2002 Mar; 14(3):727-39. PubMed ID: 11910017
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves.
    Bartoli CG; Tambussi EA; Diego F; Foyer CH
    FEBS Lett; 2009 Jan; 583(1):118-22. PubMed ID: 19059408
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Circadian Rhythm of Leaves of Phaseolus angularis Plants Grown in a Controlled Carbon Dioxide and Humidity Environment.
    Alford DK; Tibbitts TW
    Plant Physiol; 1970 Jul; 46(1):99-102. PubMed ID: 16657429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pulvinus functional traits in relation to leaf movements: a light and transmission electron microscopy study of the vascular system.
    Rodrigues TM; Machado SR
    Micron; 2008; 39(1):7-16. PubMed ID: 17950612
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanics of Reversible Deformation during Leaf Movement and Regulation of Pulvinus Development in Legumes.
    Nakata MT; Takahara M
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142170
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitrogen from senescing lower leaves of common bean is re-translocated to nodules and might be involved in a N-feedback regulation of nitrogen fixation.
    Fischinger SA; Drevon JJ; Claassen N; Schulze J
    J Plant Physiol; 2006 Oct; 163(10):987-95. PubMed ID: 16876908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of carbohydrate accumulation on photosynthesis differ between sink and source leaves of Phaseolus vulgaris L.
    Araya T; Noguchi K; Terashima I
    Plant Cell Physiol; 2006 May; 47(5):644-52. PubMed ID: 16540483
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ameliorating Effects of Leaf Water Extract of Three Aromatic Plant Species on Ozone-Polluted Snap Bean (Phaseolus vulgaris L. 'Jiangjunyoudou').
    Chen YJ; Wen MX; Sui JX; Yan YQ; Yuan W; Hong L; Zhang L
    Bull Environ Contam Toxicol; 2018 Jun; 100(6):849-855. PubMed ID: 29572555
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Growth alteration and leaf biochemical responses in Phaseolus vulgaris exposed to different doses of ionising radiation.
    Arena C; De Micco V; De Maio A
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():194-202. PubMed ID: 24373016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inositol 1,4,5-trisphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cells.
    Kim HY; Cote GG; Crain RC
    Planta; 1996 Feb; 198(2):279-87. PubMed ID: 11540725
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmalemma protection by the apoplast as assessed from above-zero ozone concentrations in leaf intercellular air spaces.
    Moldau H; Bichele I
    Planta; 2002 Jan; 214(3):484-7. PubMed ID: 11855652
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The nodulation and nyctinastic leaf movement is orchestrated by clock gene LHY in Medicago truncatula.
    Kong Y; Han L; Liu X; Wang H; Wen L; Yu X; Xu X; Kong F; Fu C; Mysore KS; Wen J; Zhou C
    J Integr Plant Biol; 2020 Dec; 62(12):1880-1895. PubMed ID: 33405366
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L.
    Alamillo JM; Díaz-Leal JL; Sánchez-Moran MV; Pineda M
    Plant Cell Environ; 2010 Nov; 33(11):1828-37. PubMed ID: 20545885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aquaporins and plant leaf movements.
    Uehlein N; Kaldenhoff R
    Ann Bot; 2008 Jan; 101(1):1-4. PubMed ID: 18024416
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes.
    Ramalho JC; Zlatev ZS; Leitão AE; Pais IP; Fortunato AS; Lidon FC
    Plant Biol (Stuttg); 2014 Jan; 16(1):133-46. PubMed ID: 23647987
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of valinomycin on circadian leaf movements of Phaseolus.
    Bünning E; Moser I
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2732-3. PubMed ID: 4506792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteomic changes in the roots of germinating Phaseolus vulgaris seeds in response to chilling stress and post-stress recovery.
    Badowiec A; Weidner S
    J Plant Physiol; 2014 Mar; 171(6):389-98. PubMed ID: 24594390
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nucleases activities during French bean leaf aging and dark-induced senescence.
    Lambert R; Quiles FA; Gálvez-Valdivieso G; Piedras P
    J Plant Physiol; 2017 Nov; 218():235-242. PubMed ID: 28898802
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves.
    Pieruschka R; Schurr U; Jensen M; Wolff WF; Jahnke S
    New Phytol; 2006; 169(4):779-87. PubMed ID: 16441758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.