These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 21633296)

  • 41. Late rectal toxicity determined by dose-volume parameters in computed tomography-based brachytherapy for locally advanced cervical cancer.
    Zhou YC; Zhao LN; Wang N; Hu J; Sun XH; Zhang Y; Li JP; Li WW; Liu JY; Wei LC; Shi M
    Cancer Med; 2016 Mar; 5(3):434-41. PubMed ID: 26806114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bladder distension improves the dosimetry of organs at risk during intracavitary cervical high-dose-rate brachytherapy.
    Harmon G; Chinsky B; Surucu M; Harkenrider M; Small W
    Brachytherapy; 2016; 15(1):30-4. PubMed ID: 26521661
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dosimetric comparison of
    Shukla AK; Jangid PK; Rajpurohit VS; Verma A; Dangayach SK; Gagrani V; Rathore NK
    J Cancer Res Ther; 2019; 15(6):1212-1215. PubMed ID: 31898649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Relationship Between Late Morbidity and Dose-Volume Parameter of Rectum in Combined Intracavitary/Interstitial Cervix Cancer Brachytherapy: A Mono-Institutional Experience.
    Zhang N; Liu Y; Han D; Guo X; Mao Z; Yang W; Cheng G
    Front Oncol; 2021; 11():693864. PubMed ID: 34367976
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of dosimetric and clinical parameters on clinical side effects in cervix cancer patients treated with 3D pulse-dose-rate intracavitary brachytherapy.
    Levitchi M; Charra-Brunaud C; Quetin P; Haie-Meder C; Kerr C; Castelain B; Delannes M; Thomas L; Desandes E; Peiffert D
    Radiother Oncol; 2012 Jun; 103(3):314-21. PubMed ID: 22633813
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Early outcomes and impact of a hybrid IC/IS applicator for a new MRI-based cervical brachytherapy program.
    Harkenrider MM; Surucu M; Harmon G; Mysz ML; Shea SM; Yacoub J; Goldberg A; Liotta M; Winder A; Potkul R; Roeske JC; Small W
    Brachytherapy; 2018; 17(1):187-193. PubMed ID: 29089277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of dosimetric parameters in the treatment planning of magnetic resonance imaging-based intracavitary image-guided adaptive brachytherapy with and without optimization using the central shielding technique.
    Nishikawa R; Yoshida K; Ebina Y; Omoteda M; Miyawaki D; Ishihara T; Ejima Y; Akasaka H; Satoh H; Kyotani K; Takahashi S; Sasaki R
    J Radiat Res; 2018 May; 59(3):316-326. PubMed ID: 29518234
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dosimetric consequences of interobserver variability in delineating the organs at risk in gynecologic interstitial brachytherapy.
    Damato AL; Townamchai K; Albert M; Bair RJ; Cormack RA; Jang J; Kovacs A; Lee LJ; Mak KS; Mirabeau-Beale KL; Mouw KW; Phillips JG; Pretz JL; Russo AL; Lewis JH; Viswanathan AN
    Int J Radiat Oncol Biol Phys; 2014 Jul; 89(3):674-81. PubMed ID: 24803035
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnetic Resonance Image Guided Adaptive Brachytherapy in Locally Advanced Cervical Cancer: An Experience From a Tertiary Cancer Center in a Low and Middle Income Countries Setting.
    Mahantshetty U; Krishnatry R; Hande V; Jamema S; Ghadi Y; Engineer R; Chopra S; Gurram L; Deshpande D; Shrviastava S
    Int J Radiat Oncol Biol Phys; 2017 Nov; 99(3):608-617. PubMed ID: 29280456
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tumor dose-volume response in image-guided adaptive brachytherapy for cervical cancer: A meta-regression analysis.
    Mazeron R; Castelnau-Marchand P; Escande A; Rivin Del Campo E; Maroun P; Lefkopoulos D; Chargari C; Haie-Meder C
    Brachytherapy; 2016; 15(5):537-42. PubMed ID: 27371991
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-dose-rate brachytherapy boost for locally advanced cervical cancer: Oncological outcome and toxicity analysis of 4 fractionation schemes.
    le Guyader M; Lam Cham Kee D; Thamphya B; Schiappa R; Gautier M; Chand-Fouche ME; Hannoun-Levi JM
    Clin Transl Radiat Oncol; 2022 Jan; 32():15-23. PubMed ID: 34816022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dose-effect response in image-guided adaptive brachytherapy for cervical cancer: A systematic review and meta-regression analysis.
    Tang X; Mu X; Zhao Z; Zhao H; Mao Z
    Brachytherapy; 2020; 19(4):438-446. PubMed ID: 32265118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Local recurrences in cervical cancer patients in the setting of image-guided brachytherapy: a comparison of spatial dose distribution within a matched-pair analysis.
    Schmid MP; Kirisits C; Nesvacil N; Dimopoulos JC; Berger D; Pötter R
    Radiother Oncol; 2011 Sep; 100(3):468-72. PubMed ID: 21924510
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3-T MRI-based adaptive brachytherapy for cervix cancer: treatment technique and initial clinical outcomes.
    Kharofa J; Morrow N; Kelly T; Rownd J; Paulson E; Rader J; Uyar D; Bradley W; Erickson B
    Brachytherapy; 2014; 13(4):319-25. PubMed ID: 24837024
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dose-volume histogram analysis of composite EQD2 dose distributions using the central shielding technique in cervical cancer radiotherapy.
    Tamaki T; Noda SE; Ohno T; Kumazaki Y; Kato S; Nakano T
    Brachytherapy; 2016; 15(5):598-606. PubMed ID: 27475482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of delineation uncertainties on dose to organs at risk in CT-guided intracavitary brachytherapy.
    Duane FK; Langan B; Gillham C; Walsh L; Rangaswamy G; Lyons C; Dunne M; Walker C; McArdle O
    Brachytherapy; 2014; 13(2):210-8. PubMed ID: 24090973
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer.
    Kirisits C; Pötter R; Lang S; Dimopoulos J; Wachter-Gerstner N; Georg D
    Int J Radiat Oncol Biol Phys; 2005 Jul; 62(3):901-11. PubMed ID: 15936576
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of the Dosimetric Influence of Applicator Displacement on 2D and 3D Brachytherapy for Cervical Cancer Treatment.
    Wu A; Tang D; Wu A; Liu Y; Qian L; Zhu L
    Technol Cancer Res Treat; 2021; 20():15330338211041201. PubMed ID: 34569371
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy.
    Rijkmans EC; Nout RA; Rutten IH; Ketelaars M; Neelis KJ; Laman MS; Coen VL; Gaarenstroom KN; Kroep JR; Creutzberg CL
    Gynecol Oncol; 2014 Nov; 135(2):231-8. PubMed ID: 25172763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The population percentile allowance method for determining systematic spatial error tolerances for temporary intensity modulated brachytherapy.
    Hopfensperger KM; Adams QE; Kim Y; Wu X; Xu W; Patwardhan K; Flynn RT
    Med Phys; 2023 Oct; 50(10):6469-6478. PubMed ID: 37643427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.