BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21633325)

  • 1. A protocol for collecting and staining hemocytes from the yellow fever mosquito Aedes aegypti.
    Qayum AA; Telang A
    J Vis Exp; 2011 May; (51):. PubMed ID: 21633325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti.
    Castillo JC; Robertson AE; Strand MR
    Insect Biochem Mol Biol; 2006 Dec; 36(12):891-903. PubMed ID: 17098164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti.
    Hillyer JF; Christensen BM
    Histochem Cell Biol; 2002 May; 117(5):431-40. PubMed ID: 12029490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct Roles of Hemocytes at Different Stages of Infection by Dengue and Zika Viruses in
    Leite THJF; Ferreira ÁGA; Imler JL; Marques JT
    Front Immunol; 2021; 12():660873. PubMed ID: 34093550
    [No Abstract]   [Full Text] [Related]  

  • 5. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti).
    Telang A; Qayum AA; Parker A; Sacchetta BR; Byrnes GR
    Med Vet Entomol; 2012 Sep; 26(3):271-81. PubMed ID: 22112201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innate Cellular Immune Responses in Aedes caspius (Diptera: Culicidae) Mosquitoes.
    Soliman DE; Farid HA; Hammad RE; Gad AM; Bartholomay LC
    J Med Entomol; 2016 Mar; 53(2):262-7. PubMed ID: 26792848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood feeding and insulin-like peptide 3 stimulate proliferation of hemocytes in the mosquito Aedes aegypti.
    Castillo J; Brown MR; Strand MR
    PLoS Pathog; 2011 Oct; 7(10):e1002274. PubMed ID: 21998579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of nitric oxide-producing hemocytes in Aedes and Culex mosquitoes infected with bacteria.
    Bergmann S; Graf E; Hoffmann P; Becker SC; Stern M
    Cell Tissue Res; 2024 Mar; 395(3):313-326. PubMed ID: 38240845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship of hemolymph phenol oxidase and mosquito age in Aedes aegypti.
    Li J; Tracy JW; Christensen BM
    J Invertebr Pathol; 1992 Sep; 60(2):188-91. PubMed ID: 1401989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of manipulating apoptosis on Sindbis virus infection of Aedes aegypti mosquitoes.
    Wang H; Gort T; Boyle DL; Clem RJ
    J Virol; 2012 Jun; 86(12):6546-54. PubMed ID: 22438551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fixation and preparation of developing tissues from Aedes aegypti.
    Clemons A; Haugen M; Flannery E; Kast K; Jacowski C; Severson D; Duman-Scheel M
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5508. PubMed ID: 20889705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoclonal antibodies against Manduca sexta hemocytes bind Aedes aegypti hemocytes: characterization of six monoclonal antibodies that bind hemocytes from both species.
    Willott E; Lowenberger C; Christensen BM; Kanost MR
    Dev Comp Immunol; 1995; 19(6):451-61. PubMed ID: 8773196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical transmission of Indian Ocean Lineage of chikungunya virus in Aedes aegypti and Aedes albopictus mosquitoes.
    Chompoosri J; Thavara U; Tawatsin A; Boonserm R; Phumee A; Sangkitporn S; Siriyasatien P
    Parasit Vectors; 2016 Apr; 9():227. PubMed ID: 27108077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple protocol for extracting hemocytes from wild caterpillars.
    Stoepler TM; Castillo JC; Lill JT; Eleftherianos I
    J Vis Exp; 2012 Nov; (69):e4173. PubMed ID: 23183567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allatotropin: A pleiotropic neuropeptide that elicits mosquito immune responses.
    Hernández-Martínez S; Sánchez-Zavaleta M; Brito K; Herrera-Ortiz A; Ons S; Noriega FG
    PLoS One; 2017; 12(4):e0175759. PubMed ID: 28426765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mosquitocidal properties of IgG targeting the glutamate-gated chloride channel in three mosquito disease vectors (Diptera: Culicidae).
    Meyers JI; Gray M; Foy BD
    J Exp Biol; 2015 May; 218(Pt 10):1487-95. PubMed ID: 25994632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus.
    Bartholomay LC; Cho WL; Rocheleau TA; Boyle JP; Beck ET; Fuchs JF; Liss P; Rusch M; Butler KM; Wu RC; Lin SP; Kuo HY; Tsao IY; Huang CY; Liu TT; Hsiao KJ; Tsai SF; Yang UC; Nappi AJ; Perna NT; Chen CC; Christensen BM
    Infect Immun; 2004 Jul; 72(7):4114-26. PubMed ID: 15213157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape.
    Dong S; Behura SK; Franz AWE
    BMC Genomics; 2017 May; 18(1):382. PubMed ID: 28506207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mosquito juvenile hormone binding protein (mJHBP) regulates the activation of innate immune defenses and hemocyte development.
    Kim IH; Castillo JC; Aryan A; Martin-Martin I; Nouzova M; Noriega FG; Barletta ABF; Calvo E; Adelman ZN; Ribeiro JMC; Andersen JF
    PLoS Pathog; 2020 Jan; 16(1):e1008288. PubMed ID: 31961911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti.
    Khoo CC; Piper J; Sanchez-Vargas I; Olson KE; Franz AW
    BMC Microbiol; 2010 Apr; 10():130. PubMed ID: 20426860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.