BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21633325)

  • 21. The immune and circulatory systems are functionally integrated across insect evolution.
    Yan Y; Hillyer JF
    Sci Adv; 2020 Nov; 6(48):. PubMed ID: 33239286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae.
    Pinto SB; Lombardo F; Koutsos AC; Waterhouse RM; McKay K; An C; Ramakrishnan C; Kafatos FC; Michel K
    Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21270-5. PubMed ID: 19940242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.
    Eisen L; Moore CG
    J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae.
    Li J; Tracy JW; Christensen BM
    Dev Comp Immunol; 1992; 16(1):41-8. PubMed ID: 1618354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional integration of the circulatory, immune, and respiratory systems in mosquito larvae: pathogen killing in the hemocyte-rich tracheal tufts.
    League GP; Hillyer JF
    BMC Biol; 2016 Sep; 14():78. PubMed ID: 27643786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The first detected airline introductions of yellow fever mosquitoes (Aedes aegypti) to Europe, at Schiphol International airport, the Netherlands.
    Ibañez-Justicia A; Gloria-Soria A; den Hartog W; Dik M; Jacobs F; Stroo A
    Parasit Vectors; 2017 Dec; 10(1):603. PubMed ID: 29221490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Midgut barriers prevent the replication and dissemination of the yellow fever vaccine in Aedes aegypti.
    Danet L; Beauclair G; Berthet M; Moratorio G; Gracias S; Tangy F; Choumet V; Jouvenet N
    PLoS Negl Trop Dis; 2019 Aug; 13(8):e0007299. PubMed ID: 31412040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hemocyte classification of three mosquito vectors: Aedes togoi, Anopheles lesteri and Culex quinquefasciatus.
    Dedkhad W; Bartholomay LC; Christensen BM; Hempolchom C; Chaithong U; Saeung A
    Trop Biomed; 2019 Jun; 36(2):505-513. PubMed ID: 33597413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dirofilaria immitis: effect on hemolymph polypeptide synthesis in Aedes aegypti during melanotic encapsulation reactions against microfilariae.
    Beerntsen BT; Christensen BM
    Exp Parasitol; 1990 Nov; 71(4):406-14. PubMed ID: 2226702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aedes aegypti: characterization of a hemolymph polypeptide expressed during melanotic encapsulation of filarial worms.
    Beerntsen BT; Severson DW; Christensen BM
    Exp Parasitol; 1994 Nov; 79(3):312-21. PubMed ID: 7957753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti.
    Hillyer JF; Schmidt SL; Christensen BM
    J Parasitol; 2003 Feb; 89(1):62-9. PubMed ID: 12659304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of midgut cell proliferation impacts Aedes aegypti susceptibility to dengue virus.
    Taracena ML; Bottino-Rojas V; Talyuli OAC; Walter-Nuno AB; Oliveira JHM; Angleró-Rodriguez YI; Wells MB; Dimopoulos G; Oliveira PL; Paiva-Silva GO
    PLoS Negl Trop Dis; 2018 May; 12(5):e0006498. PubMed ID: 29782512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of Dirofilaria immitis and Dirofilaria repens in Aedes japonicus and Aedes geniculatus.
    Silaghi C; Beck R; Capelli G; Montarsi F; Mathis A
    Parasit Vectors; 2017 Feb; 10(1):94. PubMed ID: 28219407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mosquito cellular immunity at single-cell resolution.
    Raddi G; Barletta ABF; Efremova M; Ramirez JL; Cantera R; Teichmann SA; Barillas-Mury C; Billker O
    Science; 2020 Aug; 369(6507):1128-1132. PubMed ID: 32855340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth characteristics of the chimeric Japanese encephalitis virus vaccine candidate, ChimeriVax-JE (YF/JE SA14--14--2), in Culex tritaeniorhynchus, Aedes albopictus, and Aedes aegypti mosquitoes.
    Bhatt TR; Crabtree MB; Guirakhoo F; Monath TP; Miller BR
    Am J Trop Med Hyg; 2000 Apr; 62(4):480-4. PubMed ID: 11220763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells.
    Parry R; Asgari S
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29950416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide transcriptomic profiling of Anopheles gambiae hemocytes reveals pathogen-specific signatures upon bacterial challenge and Plasmodium berghei infection.
    Baton LA; Robertson A; Warr E; Strand MR; Dimopoulos G
    BMC Genomics; 2009 Jun; 10():257. PubMed ID: 19500340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs.
    Li S; Mead EA; Liang S; Tu Z
    BMC Genomics; 2009 Dec; 10():581. PubMed ID: 19961592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chikungunya Virus Replication Rate Determines the Capacity of Crossing Tissue Barriers in Mosquitoes.
    Merwaiss F; Filomatori CV; Susuki Y; Bardossy ES; Alvarez DE; Saleh MC
    J Virol; 2021 Jan; 95(3):. PubMed ID: 33148794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A potential role for phenylalanine hydroxylase in mosquito immune responses.
    Johnson JK; Rocheleau TA; Hillyer JF; Chen CC; Li J; Christensen BM
    Insect Biochem Mol Biol; 2003 Mar; 33(3):345-54. PubMed ID: 12609519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.