These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21633333)

  • 21. Linking swimming performance, cardiac pumping ability and cardiac anatomy in rainbow trout.
    Claireaux G; McKenzie DJ; Genge AG; Chatelier A; Aubin J; Farrell AP
    J Exp Biol; 2005 May; 208(Pt 10):1775-84. PubMed ID: 15879059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological plasticity to water flow habitat in the damselfish, Acanthochromis polyacanthus: linking phenotype to performance.
    Binning SA; Ros AF; Nusbaumer D; Roche DG
    PLoS One; 2015; 10(3):e0121983. PubMed ID: 25807560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of acute and chronic hypoxia on the swimming performance, metabolic capacity and cardiac function of Atlantic cod (Gadus morhua).
    Petersen LH; Gamperl AK
    J Exp Biol; 2010 Mar; 213(5):808-19. PubMed ID: 20154197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Total Dissolved Gas Supersaturation on the Swimming Performance of Two Endemic Fish Species in the Upper Yangtze River.
    Wang Y; Li Y; An R; Li K
    Sci Rep; 2018 Jul; 8(1):10063. PubMed ID: 29968818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of caudal fin amputation on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish species with different metabolic modes.
    Fu C; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Mar; 164(3):456-65. PubMed ID: 23269108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of caudal fin loss and regeneration on the swimming performance of three cyprinid fish species with different swimming capacities.
    Fu C; Cao ZD; Fu SJ
    J Exp Biol; 2013 Aug; 216(Pt 16):3164-74. PubMed ID: 23661776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins.
    Wen L; Ren Z; Di Santo V; Hu K; Yuan T; Wang T; Lauder GV
    Soft Robot; 2018 Aug; 5(4):375-388. PubMed ID: 29634444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of constant acceleration swimming speeds when acceleration rates are different with critical swimming speeds in Chinese bream under two oxygen tensions.
    Wang JW; Cao ZD; Fu SJ
    Fish Physiol Biochem; 2016 Oct; 42(5):1453-61. PubMed ID: 27147426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Burst-and-coast swimmers optimize gait by adapting unique intrinsic cycle.
    Li G; Ashraf I; François B; Kolomenskiy D; Lechenault F; Godoy-Diana R; Thiria B
    Commun Biol; 2021 Jan; 4(1):40. PubMed ID: 33446863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Swimming performance of the freshwater neotropical fish: Pimelodus maculatus Lacepède, 1803.
    Santos HA; Pompeu PS; Vicentini GS; Martinez CB
    Braz J Biol; 2008 May; 68(2):433-9. PubMed ID: 18660976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Key factors explaining critical swimming speed in freshwater fish: a review and statistical analysis for Iberian species.
    Cano-Barbacil C; Radinger J; Argudo M; Rubio-Gracia F; Vila-Gispert A; García-Berthou E
    Sci Rep; 2020 Nov; 10(1):18947. PubMed ID: 33144649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimal swimming speed in head currents and effects on distance movement of winter-migrating fish.
    Brodersen J; Nilsson PA; Ammitzbøll J; Hansson LA; Skov C; Brönmark C
    PLoS One; 2008 May; 3(5):e2156. PubMed ID: 18478053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unsteady flow affects swimming energetics in a labriform fish (Cymatogaster aggregata).
    Roche DG; Taylor MK; Binning SA; Johansen JL; Domenici P; Steffensen JF
    J Exp Biol; 2014 Feb; 217(Pt 3):414-22. PubMed ID: 24115060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Individual variation and repeatability in aerobic and anaerobic swimming performance of European sea bass, Dicentrarchus labrax.
    Marras S; Claireaux G; McKenzie DJ; Nelson JA
    J Exp Biol; 2010 Jan; 213(1):26-32. PubMed ID: 20008358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism-speed curve in fishes.
    Di Santo V; Kenaley CP; Lauder GV
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):13048-13053. PubMed ID: 29158392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin.
    Low KH; Chong CW
    Bioinspir Biomim; 2010 Dec; 5(4):046002. PubMed ID: 21068469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The energetics of 'airtime': estimating swim power from breaching behaviour in fishes and cetaceans.
    Halsey LG; Iosilevskii G
    J Exp Biol; 2020 Jan; 223(Pt 1):. PubMed ID: 31767731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of constant flow velocity on endurance swimming and fatigue metabolism in red drum and blackhead seabream.
    Chai R; Lou Y; Huo R; Yin H; Huang L; Wang H; Wang P
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Jan; 275():111331. PubMed ID: 36209958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexibility is a hidden axis of biomechanical diversity in fishes.
    Jimenez YE; Lucas KN; Long JH; Tytell ED
    J Exp Biol; 2023 Apr; 226(Suppl_1):. PubMed ID: 37086034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fin and body neuromuscular coordination changes during walking and swimming in
    Foster KL; Dhuper M; Standen EM
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 29967218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.