These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21633333)

  • 61. The cost of chronic stress: impacts of a nonhabituating stress response on metabolic variables and swimming performance in sturgeon.
    Lankford SE; Adams TE; Miller RA; Cech JJ
    Physiol Biochem Zool; 2005; 78(4):599-609. PubMed ID: 15957114
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes.
    Hale ME; Day RD; Thorsen DH; Westneat MW
    J Exp Biol; 2006 Oct; 209(Pt 19):3708-18. PubMed ID: 16985188
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Estimating fish swimming metrics and metabolic rates with accelerometers: the influence of sampling frequency.
    Brownscombe JW; Lennox RJ; Danylchuk AJ; Cooke SJ
    J Fish Biol; 2018 Aug; 93(2):207-214. PubMed ID: 29931782
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Swimming performance in juvenile shortnose sturgeon (
    Downie AT; Kieffer JD
    Conserv Physiol; 2017; 5(1):cox038. PubMed ID: 28835841
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Metabolism, swimming performance, and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): evidence for phenotypic differences in physiological function.
    Gamperl AK; Rodnick KJ; Faust HA; Venn EC; Bennett MT; Crawshaw LI; Keeley ER; Powell MS; Li HW
    Physiol Biochem Zool; 2002; 75(5):413-31. PubMed ID: 12529843
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Speed-dependent intrinsic caudal fin muscle recruitment during steady swimming in bluegill sunfish, Lepomis macrochirus.
    Flammang BE; Lauder GV
    J Exp Biol; 2008 Feb; 211(Pt 4):587-98. PubMed ID: 18245636
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Are larvae of demersal fishes plankton or nekton?
    Leis JM
    Adv Mar Biol; 2006; 51():57-141. PubMed ID: 16905426
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The rising cost of warming waters: effects of temperature on the cost of swimming in fishes.
    Hein AM; Keirsted KJ
    Biol Lett; 2012 Apr; 8(2):266-9. PubMed ID: 22031723
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry.
    Akanyeti O; Putney J; Yanagitsuru YR; Lauder GV; Stewart WJ; Liao JC
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13828-13833. PubMed ID: 29229818
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Morphological predictors of swimming speed performance in river and reservoir populations of Australian smelt Retropinna semoni.
    Svozil DP; Baumgartner LJ; Fulton CJ; Kopf RK; Watts RJ
    J Fish Biol; 2020 Dec; 97(6):1632-1643. PubMed ID: 32783221
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The role of the lateral line in active drag reduction by clupeoid fishes.
    Lighthill J
    Symp Soc Exp Biol; 1995; 49():35-48. PubMed ID: 8571234
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Excess postexercise oxygen consumption decreases with swimming duration in a labriform fish: Integrating aerobic and anaerobic metabolism across time.
    Cordero GA; Methling C; Tirsgaard B; Steffensen JF; Domenici P; Svendsen JC
    J Exp Zool A Ecol Integr Physiol; 2019 Dec; 331(10):577-586. PubMed ID: 31692282
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Postprandial intestinal blood flow, metabolic rates, and exercise in Chinook salmon (Oncorhynchus tshawytscha).
    Thorarensen H; Farrell AP
    Physiol Biochem Zool; 2006; 79(4):688-94. PubMed ID: 16826495
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Measuring U
    Kern P; Cramp RL; Gordos MA; Watson JR; Franklin CE
    J Fish Biol; 2018 Jan; 92(1):237-247. PubMed ID: 29193071
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The effects of dissolved oxygen levels on the metabolic interaction between digestion and locomotion in Cyprinid fishes with different locomotive and digestive performances.
    Zhang W; Cao ZD; Fu SJ
    J Comp Physiol B; 2012 Jul; 182(5):641-50. PubMed ID: 22234476
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Swimming capability and swimming behavior of juvenile acipenser schrenckii.
    Cai L; Taupier R; Johnson D; Tu Z; Liu G; Huang Y
    J Exp Zool A Ecol Genet Physiol; 2013 Mar; 319(3):149-55. PubMed ID: 23359615
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hydrodynamical effect of parallelly swimming fish using computational fluid dynamics method.
    Doi K; Takagi T; Mitsunaga Y; Torisawa S
    PLoS One; 2021; 16(5):e0250837. PubMed ID: 33939762
    [TBL] [Abstract][Full Text] [Related]  

  • 78. One size does not fit all: inter- and intraspecific variation in the swimming performance of contrasting freshwater fish.
    Jones PE; Svendsen JC; Börger L; Champneys T; Consuegra S; Jones JAH; Garcia de Leaniz C
    Conserv Physiol; 2020; 8(1):coaa126. PubMed ID: 33408868
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Not So Fast: Swimming Behavior of Sailfish during Predator-Prey Interactions using High-Speed Video and Accelerometry.
    Marras S; Noda T; Steffensen JF; Svendsen MB; Krause J; Wilson AD; Kurvers RH; Herbert-Read J; Boswell KM; Domenici P
    Integr Comp Biol; 2015 Oct; 55(4):719-27. PubMed ID: 25898843
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Measurement and relevance of maximum metabolic rate in fishes.
    Norin T; Clark TD
    J Fish Biol; 2016 Jan; 88(1):122-51. PubMed ID: 26586591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.