These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21633418)

  • 21. Angle- and energy-resolved plasmon coupling in gold nanorod dimers.
    Shao L; Woo KC; Chen H; Jin Z; Wang J; Lin HQ
    ACS Nano; 2010 Jun; 4(6):3053-62. PubMed ID: 20565141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic to vibrational energy transfer assisted by interacting transition dipole moments: a quantum model for the nonadiabatic I2(E) + CF4 collisions.
    Suleimanov YV; Buchachenko AA
    J Phys Chem A; 2007 Sep; 111(37):8959-67. PubMed ID: 17725333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging the Localized Plasmon Resonance Modes in Graphene Nanoribbons.
    Hu F; Luan Y; Fei Z; Palubski IZ; Goldflam MD; Dai S; Wu JS; Post KW; Janssen GCAM; Fogler MM; Basov DN
    Nano Lett; 2017 Sep; 17(9):5423-5428. PubMed ID: 28806525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetric and symmetric local surface-plasmon-polariton excitation on chains of nanoparticles.
    Evlyukhin AB; Reinhardt C; Evlyukhina E; Chichkov BN
    Opt Lett; 2009 Jul; 34(14):2237-9. PubMed ID: 19823560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates.
    Beck FJ; Verhagen E; Mokkapati S; Polman A; Catchpole KR
    Opt Express; 2011 Mar; 19 Suppl 2():A146-56. PubMed ID: 21445216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical investigation of mode characteristics of nanoscale surface plasmon-polaritons using a pseudospectral scheme.
    Huang CC
    Opt Express; 2010 Nov; 18(23):23711-26. PubMed ID: 21164715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode.
    Kuo Y; Ting SY; Liao CH; Huang JJ; Chen CY; Hsieh C; Lu YC; Chen CY; Shen KC; Lu CF; Yeh DM; Wang JY; Chuang WH; Kiang YW; Yang CC
    Opt Express; 2011 Jul; 19 Suppl 4():A914-29. PubMed ID: 21747562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupling to light, and transport and dissipation of energy in silver nanowires.
    Staleva H; Skrabalak SE; Carey CR; Kosel T; Xia Y; Hartland GV
    Phys Chem Chem Phys; 2009 Jul; 11(28):5889-96. PubMed ID: 19588009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular nanopolaritonics: cross manipulation of near-field plasmons and molecules. I. Theory and application to junction control.
    Neuhauser D; Lopata K
    J Chem Phys; 2007 Oct; 127(15):154715. PubMed ID: 17949199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique.
    Tremblay G; Sheng Y
    Appl Opt; 2010 Mar; 49(7):A36-41. PubMed ID: 20197801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Dimensional Drexhage Experiment for Electric- and Magnetic-Dipole Sources on Plasmonic Interfaces.
    Brechbühler R; Rabouw FT; Rohner P; le Feber B; Poulikakos D; Norris DJ
    Phys Rev Lett; 2018 Sep; 121(11):113601. PubMed ID: 30265099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct observation of surface plasmon-polariton dispersion.
    Giannattasio A; Barnes W
    Opt Express; 2005 Jan; 13(2):428-34. PubMed ID: 19488369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of gain-assisted waveguiding in metal-dielectric nanowires.
    Handapangoda D; Rukhlenko ID; Premaratne M; Jagadish C
    Opt Lett; 2010 Dec; 35(24):4190-2. PubMed ID: 21165133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?
    Foley Iv JJ; Harutyunyan H; Rosenmann D; Divan R; Wiederrecht GP; Gray SK
    Sci Rep; 2015 Apr; 5():9929. PubMed ID: 25905685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. C6H6/Au(111): interface dipoles, band alignment, charging energy, and van der Waals interaction.
    Abad E; Dappe YJ; Martínez JI; Flores F; Ortega J
    J Chem Phys; 2011 Jan; 134(4):044701. PubMed ID: 21280779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A molecular spectroscopic view of surface plasmon enhanced resonance Raman scattering.
    Kelley AM
    J Chem Phys; 2008 Jun; 128(22):224702. PubMed ID: 18554038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical properties of metal-dielectric-metal microcavities in the THz frequency range.
    Todorov Y; Tosetto L; Teissier J; Andrews AM; Klang P; Colombelli R; Sagnes I; Strasser G; Sirtori C
    Opt Express; 2010 Jun; 18(13):13886-907. PubMed ID: 20588522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On Plasmon Polariton Propagation Along Metallic Nano-Chain.
    Jacak WA
    Plasmonics; 2013; 8(3):1317-1333. PubMed ID: 23956703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors.
    Li G; Cai L; Xiao F; Pei Y; Xu A
    Opt Express; 2010 May; 18(10):10487-99. PubMed ID: 20588902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of surface collisions on enhancement and quenching of the luminescence near the metal nanoparticles.
    Khurgin JB; Sun G
    Opt Express; 2015 Nov; 23(24):30739-48. PubMed ID: 26698706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.