These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 21633442)

  • 1. Spectral phase retrieval of 8 fs optical pulses at 600 nm by using a collinear autocorrelator with 300-μm-thick lithium triborate crystals.
    Hsu CS; Lee YH; Yabushita A; Kobayashi T; Yang SD
    Opt Lett; 2011 Jun; 36(11):2041-3. PubMed ID: 21633442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband, rapidly tunable Ti:sapphire-pumped BiB₃O₆ femtosecond optical parametric oscillator.
    Esteban-Martin A; Ramaiah-Badarla V; Petrov V; Ebrahim-Zadeh M
    Opt Lett; 2011 May; 36(9):1671-3. PubMed ID: 21540964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral phase transfer to ultrashort UV pulses through four-wave mixing.
    Zuo P; Fuji T; Suzuki T
    Opt Express; 2010 Jul; 18(15):16183-92. PubMed ID: 20721004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive direct-field retrieval of femtosecond pulses by modified interferometric field autocorrelation.
    Yang SD; Hsu CS; Lin SL; Lin YS; Langrock C; Fejer MM
    Opt Lett; 2009 Oct; 34(20):3065-7. PubMed ID: 19838227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forty-photon-per-pulse spectral phase retrieval by shaper-assisted modified interferometric field autocorrelation.
    Hsu CS; Chiang HC; Chuang HP; Huang CB; Yang SD
    Opt Lett; 2011 Jul; 36(14):2611-3. PubMed ID: 21765484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 16 fs, 350 nJ pulses at 5 MHz repetition rate delivered by chirped pulse compression in fibers.
    Ganz T; Pervak V; Apolonski A; Baum P
    Opt Lett; 2011 Apr; 36(7):1107-9. PubMed ID: 21478998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autocorrelation and phase retrieval in the UV using two-photon absorption in diamond pin photodiodes.
    Kleimeier NF; Haarlammert T; Witte H; Schühle U; Hochedez JF; BenMoussa A; Zacharias H
    Opt Express; 2010 Mar; 18(7):6945-56. PubMed ID: 20389714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation of ultrashort laser pulses in water: linear absorption and onset of nonlinear spectral transformation.
    Sokolov AV; Naveira LM; Poudel MP; Strohaber J; Trendafilova CS; Buck WC; Wang J; Strycker BD; Wang C; Schuessler H; Kolomenskii A; Kattawar GW
    Appl Opt; 2010 Jan; 49(3):513-9. PubMed ID: 20090819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical fiber link for transmission of 1-nJ femtosecond laser pulses at 1550 nm.
    Eichhorn F; Olsson RK; Buron JC; Grüner-Nielsen L; Pedersen JE; Jepsen PU
    Opt Express; 2010 Mar; 18(7):6978-87. PubMed ID: 20389717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear absorption in lithium triborate frequency converters for high-power ultrafast lasers.
    Röcker C; Weinert P; Villeval P; Lupinski D; Delaigue M; Hönninger C; Weber R; Graf T; Ahmed MA
    Opt Express; 2022 Feb; 30(4):5423-5438. PubMed ID: 35209505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-reflective high fringe contrast autocorrelator for measurement of ultrabroadband optical pulses.
    Power E; Pentland J; Nees J; Hauri CP; Merano M; Lopez-Martens R; Mourou G
    Opt Lett; 2006 Dec; 31(23):3514-6. PubMed ID: 17099768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BOAR: Biprism based optical autocorrelation with retrieval.
    Billard F; Dubrouil A; Hertz E; Lecorné S; Szmygel E; Faucher O; Béjot P
    Rev Sci Instrum; 2019 Jun; 90(6):063110. PubMed ID: 31255003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple, picojoule-sensitive ultraviolet autocorrelator based on two-photon conductivity in sapphire.
    Leedle KJ; Urbanek KE; Byer RL
    Appl Opt; 2017 Mar; 56(8):2226-2229. PubMed ID: 28375306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of high-energy, sub-20-fs pulses in the deep ultraviolet by using spectral broadening during filamentation in argon.
    Ghotbi M; Trabs P; Beutler M
    Opt Lett; 2011 Feb; 36(4):463-5. PubMed ID: 21326423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical, spectroelectrochemical, and molecular quadratic and cubic nonlinear optical properties of alkynylruthenium dendrimers.
    Cifuentes MP; Powell CE; Morrall JP; McDonagh AM; Lucas NT; Humphrey MG; Samoc M; Houbrechts S; Asselberghs I; Clays K; Persoons A; Isoshima T
    J Am Chem Soc; 2006 Aug; 128(33):10819-32. PubMed ID: 16910677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear optical properties of phenoxy-phthalocyanines at 800 nm with femtosecond pulse excitation.
    Ma L; Zhang Y; Yuan P
    Opt Express; 2010 Aug; 18(17):17666-71. PubMed ID: 20721153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast temporal pulse shaping via phase-sensitive three-wave mixing.
    Yin YC; French D; Jovanovic I
    Opt Express; 2010 Aug; 18(17):18471-82. PubMed ID: 20721242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Photon Absorbing Properties of Ultraviolet Phase-Matchable Crystals at 264 and 211 nm.
    Dubietis A; Tamosauskas G; Varanavi Ius A; Valiulis G
    Appl Opt; 2000 May; 39(15):2437-40. PubMed ID: 18345157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase.
    Schriever C; Lochbrunner S; Riedle E; Nesbitt DJ
    Rev Sci Instrum; 2008 Jan; 79(1):013107. PubMed ID: 18248022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy of nonlinear optical absorption of LBO crystals at 355  nm.
    Vershinin OI; Konyashkin AV; Ryabushkin OA
    Opt Lett; 2018 Jan; 43(1):58-61. PubMed ID: 29328196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.