These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21633732)

  • 61. Optimization of nonlinear optical localization using electromagnetic surface fields (NOLES) imaging.
    Jarrett JW; Chandra M; Knappenberger KL
    J Chem Phys; 2013 Jun; 138(21):214202. PubMed ID: 23758364
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons.
    Smolyaninov II; Elliott J; Zayats AV; Davis CC
    Phys Rev Lett; 2005 Feb; 94(5):057401. PubMed ID: 15783692
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High spatial resolution mapping of individual and collective localized surface plasmon resonance modes of silver nanoparticle aggregates: correlation to optical measurements.
    Diaz-Egea C; Abargues R; Martínez-Pastor JP; Sigle W; van Aken PA; Molina SI
    Nanoscale Res Lett; 2015 Dec; 10(1):1024. PubMed ID: 26239880
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cooperative Change in the Internal Dynamics of Streptavidin Caused by Biotin Binding.
    Sarter M
    J Phys Chem B; 2023 Apr; 127(14):3241-3247. PubMed ID: 36988313
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy.
    Okada T; Ogura T
    Sci Rep; 2017 Feb; 7():43025. PubMed ID: 28230204
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Super-Resolution Imaging and Plasmonics.
    Willets KA; Wilson AJ; Sundaresan V; Joshi PB
    Chem Rev; 2017 Jun; 117(11):7538-7582. PubMed ID: 28084729
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Continuous biomarker monitoring by particle mobility sensing with single molecule resolution.
    Visser EWA; Yan J; van IJzendoorn LJ; Prins MWJ
    Nat Commun; 2018 Jun; 9(1):2541. PubMed ID: 29959314
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sub-10-nm imaging of nucleic acids using spectroscopic intrinsic-contrast photon-localization optical nanoscopy (SICLON).
    Eshein A; Li Y; Dong B; Almassalha LM; Chandler JE; Nguyen TQ; Hujsak KA; Dravid VP; Sun C; Zhang HF; Backman V
    Opt Lett; 2018 Dec; 43(23):5817-5820. PubMed ID: 30499949
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Probing Single-Molecule Binding Event by the Dynamic Counting and Mapping of Individual Nanoparticles.
    Wang Y; Jing W; Tao N; Wang H
    ACS Sens; 2021 Feb; 6(2):523-529. PubMed ID: 33284583
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Immersed transparent microsphere magnifying sub-diffraction-limited objects.
    Lee S; Li L; Wang Z; Guo W; Yan Y; Wang T
    Appl Opt; 2013 Oct; 52(30):7265-70. PubMed ID: 24216580
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Observing single protein binding by optical transmission through a double nanohole aperture in a metal film.
    Al Balushi AA; Zehtabi-Oskuie A; Gordon R
    Biomed Opt Express; 2013; 4(9):1504-11. PubMed ID: 24049672
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging.
    Bao W; Melli M; Caselli N; Riboli F; Wiersma DS; Staffaroni M; Choo H; Ogletree DF; Aloni S; Bokor J; Cabrini S; Intonti F; Salmeron MB; Yablonovitch E; Schuck PJ; Weber-Bargioni A
    Science; 2012 Dec; 338(6112):1317-21. PubMed ID: 23224550
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optical force mapping at the single-nanometre scale.
    Yamanishi J; Yamane H; Naitoh Y; Li YJ; Yokoshi N; Kameyama T; Koyama S; Torimoto T; Ishihara H; Sugawara Y
    Nat Commun; 2021 Jun; 12(1):3865. PubMed ID: 34162845
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nanoscale optical imaging in chemistry.
    Wilson AJ; Devasia D; Jain PK
    Chem Soc Rev; 2020 Jul; ():. PubMed ID: 32700702
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Label-Free Plasmonic Detection of Untethered Nanometer-Sized Brownian Particles.
    Baaske MD; Neu PS; Orrit M
    ACS Nano; 2020 Oct; 14(10):14212-14218. PubMed ID: 33054166
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nanoscale resolution in the focal plane of an optical microscope.
    Westphal V; Hell SW
    Phys Rev Lett; 2005 Apr; 94(14):143903. PubMed ID: 15904066
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Streptavidin cooperative allosterism upon binding biotin observed by differential changes in intrinsic fluorescence.
    Waner MJ; Hiznay JM; Mustovich AT; Patton W; Ponyik C; Mascotti DP
    Biochem Biophys Rep; 2019 Mar; 17():127-131. PubMed ID: 30805560
    [TBL] [Abstract][Full Text] [Related]  

  • 78. DNA-PAINT super-resolution imaging data of surface exposed active sites on particles.
    Delcanale P; Albertazzi L
    Data Brief; 2020 Jun; 30():105468. PubMed ID: 32382590
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy.
    Li W; Stein SC; Gregor I; Enderlein J
    Opt Express; 2015 Feb; 23(3):3770-83. PubMed ID: 25836229
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.