These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 2163381)

  • 1. Genetic assessment of stationary phase for cells of the yeast Saccharomyces cerevisiae.
    Drebot MA; Barnes CA; Singer RA; Johnston GC
    J Bacteriol; 1990 Jul; 172(7):3584-9. PubMed ID: 2163381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermotolerance is independent of induction of the full spectrum of heat shock proteins and of cell cycle blockage in the yeast Saccharomyces cerevisiae.
    Barnes CA; Johnston GC; Singer RA
    J Bacteriol; 1990 Aug; 172(8):4352-8. PubMed ID: 2198254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of yeast histone genes by stimulation of stationary-phase cells.
    Drebot MA; Veinot-Drebot LM; Singer RA; Johnston GC
    Mol Cell Biol; 1990 Dec; 10(12):6356-61. PubMed ID: 2247060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A yeast mutant conditionally defective only for reentry into the mitotic cell cycle from stationary phase.
    Drebot MA; Johnston GC; Singer RA
    Proc Natl Acad Sci U S A; 1987 Nov; 84(22):7948-52. PubMed ID: 3317397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stationary phase in the yeast Saccharomyces cerevisiae.
    Werner-Washburne M; Braun E; Johnston GC; Singer RA
    Microbiol Rev; 1993 Jun; 57(2):383-401. PubMed ID: 8393130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial DNA loss by yeast reentry-mutant cells conditionally unable to proliferate from stationary phase.
    Filipak M; Drebot MA; Ireland LS; Singer RA; Johnston GC
    Curr Genet; 1992 Dec; 22(6):471-7. PubMed ID: 1473178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of cAMP with the CDC25-mediated step in the cell cycle of budding yeast.
    Martegani E; Baroni M; Wanoni M
    Exp Cell Res; 1986 Feb; 162(2):544-8. PubMed ID: 3002825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of proliferation by the budding yeast Saccharomyces cerevisiae.
    Johnston GC; Singer RA
    Biochem Cell Biol; 1990 Feb; 68(2):427-35. PubMed ID: 2160831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses.
    Park JI; Grant CM; Dawes IW
    Biochem Biophys Res Commun; 2005 Feb; 327(1):311-9. PubMed ID: 15629464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest.
    Ma P; Winderickx J; Nauwelaers D; Dumortier F; De Doncker A; Thevelein JM; Van Dijck P
    Yeast; 1999 Aug; 15(11):1097-109. PubMed ID: 10455233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress resistance of yeast cells is largely independent of cell cycle phase.
    Elliott B; Futcher B
    Yeast; 1993 Jan; 9(1):33-42. PubMed ID: 8442385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae.
    van Aelst L; Jans AW; Thevelein JM
    J Gen Microbiol; 1991 Feb; 137(2):341-9. PubMed ID: 1849965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae.
    Plesset J; Ludwig JR; Cox BS; McLaughlin CS
    J Bacteriol; 1987 Feb; 169(2):779-84. PubMed ID: 3542970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose induces cAMP-independent growth-related changes in stationary-phase cells of Saccharomyces cerevisiae.
    Granot D; Snyder M
    Proc Natl Acad Sci U S A; 1991 Jul; 88(13):5724-8. PubMed ID: 1648229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular syntheses in the cell cycle mutant cdc25 of budding yeast.
    Martegani E; Vanoni M; Baroni M
    Eur J Biochem; 1984 Oct; 144(2):205-10. PubMed ID: 6386464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stationary phase in Saccharomyces cerevisiae.
    Werner-Washburne M; Braun EL; Crawford ME; Peck VM
    Mol Microbiol; 1996 Mar; 19(6):1159-66. PubMed ID: 8730858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of the cAMP pathway by the cell cycle start function, CDC25, in Saccharomyces cerevisiae.
    Tripp ML; PiƱon R
    J Gen Microbiol; 1986 May; 132(5):1143-51. PubMed ID: 3021894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Genetic control of growth and development of yeast Saccharomyces cerevisiae cells. Phenotypic selection of mutants among strains of the Peterhof genetic collection].
    Chitavichius D
    Genetika; 2001 Jun; 37(6):762-9. PubMed ID: 11517762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the Ras/cyclic AMP pathway in the yeast Saccharomyces cerevisiae does not prevent G1 arrest in response to nitrogen starvation.
    Markwardt DD; Garrett JM; Eberhardy S; Heideman W
    J Bacteriol; 1995 Dec; 177(23):6761-5. PubMed ID: 7592465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae.
    Sass P; Field J; Nikawa J; Toda T; Wigler M
    Proc Natl Acad Sci U S A; 1986 Dec; 83(24):9303-7. PubMed ID: 3025832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.