BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

896 related articles for article (PubMed ID: 21633985)

  • 21. N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis.
    Yoo YD; Mun SR; Ji CH; Sung KW; Kang KY; Heo AJ; Lee SH; An JY; Hwang J; Xie XQ; Ciechanover A; Kim BY; Kwon YT
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2716-E2724. PubMed ID: 29507222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation.
    Eldeeb MA; Leitao LCA; Fahlman RP
    Biochem Cell Biol; 2018 Jun; 96(3):289-294. PubMed ID: 29253354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring the interactions between N-degrons and N-recognins of the Arg/N-degron pathway.
    Kwon SC; Lee J; Kwon YT; Heo AJ
    Methods Enzymol; 2023; 686():165-203. PubMed ID: 37532399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays.
    Wadas B; Piatkov KI; Brower CS; Varshavsky A
    J Biol Chem; 2016 Sep; 291(40):20976-20992. PubMed ID: 27510035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway.
    Shemorry A; Hwang CS; Varshavsky A
    Mol Cell; 2013 May; 50(4):540-51. PubMed ID: 23603116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-terminal acetylation and the N-end rule pathway control degradation of the lipid droplet protein PLIN2.
    Nguyen KT; Lee CS; Mun SH; Truong NT; Park SK; Hwang CS
    J Biol Chem; 2019 Jan; 294(1):379-388. PubMed ID: 30425097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The N-end rule pathway enzyme Naa10 supports epiblast specification in mouse embryonic stem cells by modulating FGF/MAPK.
    Takekoshi D; Tokuzawa Y; Sakanaka M; Kato H
    In Vitro Cell Dev Biol Anim; 2019 May; 55(5):355-367. PubMed ID: 30993557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calpain-generated natural protein fragments as short-lived substrates of the N-end rule pathway.
    Piatkov KI; Oh JH; Liu Y; Varshavsky A
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):E817-26. PubMed ID: 24550490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The N-degradome of Escherichia coli: limited proteolysis in vivo generates a large pool of proteins bearing N-degrons.
    Humbard MA; Surkov S; De Donatis GM; Jenkins LM; Maurizi MR
    J Biol Chem; 2013 Oct; 288(40):28913-24. PubMed ID: 23960079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The N-degron pathway: From basic science to therapeutic applications.
    Heo AJ; Kim SB; Kwon YT; Ji CH
    Biochim Biophys Acta Gene Regul Mech; 2023 Jun; 1866(2):194934. PubMed ID: 36990317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway.
    Chen SJ; Kim L; Song HK; Varshavsky A
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34663735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway.
    Liu YJ; Liu C; Chang Z; Wadas B; Brower CS; Song ZH; Xu ZL; Shang YL; Liu WX; Wang LN; Dong W; Varshavsky A; Hu RG; Li W
    J Biol Chem; 2016 Apr; 291(14):7426-38. PubMed ID: 26858254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological functions and clinical implications of the N-end rule pathway.
    Liu Y; Liu C; Dong W; Li W
    Front Med; 2016 Sep; 10(3):258-70. PubMed ID: 27492620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway.
    Johnston JA; Johnson ES; Waller PR; Varshavsky A
    J Biol Chem; 1995 Apr; 270(14):8172-8. PubMed ID: 7713922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formyl-methionine as a degradation signal at the N-termini of bacterial proteins.
    Piatkov KI; Vu TT; Hwang CS; Varshavsky A
    Microb Cell; 2015; 2(10):376-393. PubMed ID: 26866044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular basis for the post-translational addition of amino acids by L/F transferase in the N-end rule pathway.
    Fung AW; Fahlman RP
    Curr Protein Pept Sci; 2015; 16(2):163-80. PubMed ID: 25692952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The N-end rule pathway: emerging functions and molecular principles of substrate recognition.
    Sriram SM; Kim BY; Kwon YT
    Nat Rev Mol Cell Biol; 2011 Oct; 12(11):735-47. PubMed ID: 22016057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins.
    Jiang Y; Lee J; Lee JH; Lee JW; Kim JH; Choi WH; Yoo YD; Cha-Molstad H; Kim BY; Kwon YT; Noh SA; Kim KP; Lee MJ
    Autophagy; 2016 Nov; 12(11):2197-2212. PubMed ID: 27560450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural study for substrate recognition of human N-terminal glutamine amidohydrolase 1 in the arginine N-degron pathway.
    Kang JM; Park JS; Lee JS; Jang JY; Han BW
    Protein Sci; 2024 Jul; 33(7):e5067. PubMed ID: 38864716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions.
    Gibbs DJ; Bacardit J; Bachmair A; Holdsworth MJ
    Trends Cell Biol; 2014 Oct; 24(10):603-11. PubMed ID: 24874449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.