BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21634122)

  • 1. [Molecular dynamics method for proteins with ionization-conformation coupling and equilibrium titration].
    Vorob'ev IuN
    Mol Biol (Mosk); 2011; 45(2):346-55. PubMed ID: 21634122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of mean force of water-proton bath and molecular dynamic simulation of proteins at constant pH.
    Vorobjev YN
    J Comput Chem; 2012 Mar; 33(8):832-42. PubMed ID: 22278814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of protein conformational freedom as a function of pH: constant-pH molecular dynamics using implicit titration.
    Baptista AM; Martel PJ; Petersen SB
    Proteins; 1997 Apr; 27(4):523-44. PubMed ID: 9141133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculating proton uptake/release and binding free energy taking into account ionization and conformation changes induced by protein-inhibitor association: application to plasmepsin, cathepsin D and endothiapepsin-pepstatin complexes.
    Alexov E
    Proteins; 2004 Aug; 56(3):572-84. PubMed ID: 15229889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased rigidity of eglin c at acidic pH: evidence from NMR spin relaxation and MD simulations.
    Hu H; Clarkson MW; Hermans J; Lee AL
    Biochemistry; 2003 Dec; 42(47):13856-68. PubMed ID: 14636053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A precise analytical method for calculating the electrostatic energy of macromolecules in aqueous solution.
    Schaefer M; Froemmel C
    J Mol Biol; 1990 Dec; 216(4):1045-66. PubMed ID: 2266555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of titration properties of structures of a protein derived from molecular dynamics trajectories.
    Wlodek ST; Antosiewicz J; McCammon JA
    Protein Sci; 1997 Feb; 6(2):373-82. PubMed ID: 9041639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple protonation equilibria in electrostatics of protein-protein binding.
    Piłat Z; Antosiewicz JM
    J Phys Chem B; 2008 Nov; 112(47):15074-85. PubMed ID: 18950218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.
    Wallace JA; Wang Y; Shi C; Pastoor KJ; Nguyen BL; Xia K; Shen JK
    Proteins; 2011 Dec; 79(12):3364-73. PubMed ID: 21748801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward the accurate first-principles prediction of ionization equilibria in proteins.
    Khandogin J; Brooks CL
    Biochemistry; 2006 Aug; 45(31):9363-73. PubMed ID: 16878971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A demonstration of the inhomogeneity of the local dielectric response of proteins by molecular dynamics simulations.
    Patargias GN; Harris SA; Harding JH
    J Chem Phys; 2010 Jun; 132(23):235103. PubMed ID: 20572740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein molecular dynamics with electrostatic force entirely determined by a single Poisson-Boltzmann calculation.
    Lu BZ; Chen WZ; Wang CX; Xu XJ
    Proteins; 2002 Aug; 48(3):497-504. PubMed ID: 12112674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating proteins at constant pH: An approach combining molecular dynamics and Monte Carlo simulation.
    Bürgi R; Kollman PA; Van Gunsteren WF
    Proteins; 2002 Jun; 47(4):469-80. PubMed ID: 12001225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of charge distribution and conformation in peptides: comparison of theory and experiment.
    Makowska J; Bagińska K; Kasprzykowski F; Vila JA; Jagielska A; Liwo A; Chmurzyński L; Scheraga HA
    Biopolymers; 2005; 80(2-3):214-24. PubMed ID: 15630705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-dependent stability of sperm whale myoglobin in water-guanidine hydrochloride solutions.
    Shosheva A; Miteva M; Christova P; Atanasov B
    Eur Biophys J; 2003 Feb; 31(8):617-25. PubMed ID: 12582821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculations of pH-dependent binding of proteins to biological membranes.
    Mihajlovic M; Lazaridis T
    J Phys Chem B; 2006 Feb; 110(7):3375-84. PubMed ID: 16494352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling between conformation and proton binding in proteins.
    Vila JA; Ripoll DR; Arnautova YA; Vorobjev YN; Scheraga HA
    Proteins; 2005 Oct; 61(1):56-68. PubMed ID: 16080152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.