These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21634292)

  • 1. Energy expenditure estimation during daily military routine with body-fixed sensors.
    Wyss T; Mäder U
    Mil Med; 2011 May; 176(5):494-9. PubMed ID: 21634292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambulatory physical activity in Swiss Army recruits.
    Wyss T; Scheffler J; Mäder U
    Int J Sports Med; 2012 Sep; 33(9):716-22. PubMed ID: 22706943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise.
    Jakicic JM; Marcus M; Gallagher KI; Randall C; Thomas E; Goss FL; Robertson RJ
    Med Sci Sports Exerc; 2004 May; 36(5):897-904. PubMed ID: 15126727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of the SenseWear Armband to assess energy expenditure during intermittent exercise and recovery in rugby union players.
    Zanetti S; Pumpa KL; Wheeler KW; Pyne DB
    J Strength Cond Res; 2014 Apr; 28(4):1090-5. PubMed ID: 24088866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of military-specific physical activities with body-fixed sensors.
    Wyss T; Mäder U
    Mil Med; 2010 Nov; 175(11):858-64. PubMed ID: 21121495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaches to estimating physical activity in the community: calorimetric validation of actometers and heart rate monitoring.
    Avons P; Garthwaite P; Davies HL; Murgatroyd PR; James WP
    Eur J Clin Nutr; 1988 Mar; 42(3):185-96. PubMed ID: 3383823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
    Ohkawara K; Oshima Y; Hikihara Y; Ishikawa-Takata K; Tabata I; Tanaka S
    Br J Nutr; 2011 Jun; 105(11):1681-91. PubMed ID: 21262061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of Polar Grit X Pro for Estimating Energy Expenditure during Military Field Training: A Pilot Study.
    Kloss EB; Givens A; Palombo L; Bernards J; Niederberger B; Bennett DW; Kelly KR
    J Sports Sci Med; 2023 Dec; 22(4):658-666. PubMed ID: 38045749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy Expenditure in Adolescents With Cerebral Palsy: Comparison of the SenseWear Armband and Indirect Calorimetry.
    Koehler K; Abel T; Wallmann-Sperlich B; Dreuscher A; Anneken V
    J Phys Act Health; 2015 Apr; 12(4):540-5. PubMed ID: 26125638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An artificial neural network model of energy expenditure using nonintegrated acceleration signals.
    Rothney MP; Neumann M; Béziat A; Chen KY
    J Appl Physiol (1985); 2007 Oct; 103(4):1419-27. PubMed ID: 17641221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of steps and energy expenditure assessment in adults of Fitbit Tracker and Ultra to the Actical and indirect calorimetry.
    Adam Noah J; Spierer DK; Gu J; Bronner S
    J Med Eng Technol; 2013 Oct; 37(7):456-62. PubMed ID: 24007317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of the Actiheart for the assessment of energy expenditure in adults.
    Crouter SE; Churilla JR; Bassett DR
    Eur J Clin Nutr; 2008 Jun; 62(6):704-11. PubMed ID: 17440515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating metabolic equivalents for activities in daily life using acceleration and heart rate in wearable devices.
    Nakanishi M; Izumi S; Nagayoshi S; Kawaguchi H; Yoshimoto M; Shiga T; Ando T; Nakae S; Usui C; Aoyama T; Tanaka S
    Biomed Eng Online; 2018 Jul; 17(1):100. PubMed ID: 30055617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of the SenseWear Armband™ during ergocycling.
    Brazeau AS; Karelis AD; Mignault D; Lacroix MJ; Prud'homme D; Rabasa-Lhoret R
    Int J Sports Med; 2011 Oct; 32(10):761-4. PubMed ID: 21913157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving energy expenditure estimation for physical activity.
    Zhang K; Pi-Sunyer FX; Boozer CN
    Med Sci Sports Exerc; 2004 May; 36(5):883-9. PubMed ID: 15126725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a wearable body monitoring device during treadmill walking and jogging in patients with fibromyalgia syndrome.
    Munguía-Izquierdo D; Santalla A; Legaz-Arrese A
    Arch Phys Med Rehabil; 2012 Jan; 93(1):115-22. PubMed ID: 22200390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.