These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 21634375)

  • 21. Reaction mechanism governing formation of 1,3-bis(diphenylphosphino)propane-protected gold nanoclusters.
    Hudgens JW; Pettibone JM; Senftle TP; Bratton RN
    Inorg Chem; 2011 Oct; 50(20):10178-89. PubMed ID: 21928777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon Monoxide: A Mild and Efficient Reducing Agent towards Atomically Precise Gold Nanoclusters.
    Chen T; Xie J
    Chem Rec; 2016 Aug; 16(4):1761-71. PubMed ID: 27254131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-property relationships on thiolate-protected gold nanoclusters.
    Cowan MJ; Mpourmpakis G
    Nanoscale Adv; 2019 Jan; 1(1):184-188. PubMed ID: 36132447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ligand-exchange synthesis of selenophenolate-capped Au25 nanoclusters.
    Meng X; Xu Q; Wang S; Zhu M
    Nanoscale; 2012 Jul; 4(14):4161-5. PubMed ID: 22508477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomically precise metal nanoclusters: stable sizes and optical properties.
    Jin R
    Nanoscale; 2015 Feb; 7(5):1549-65. PubMed ID: 25532730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaction network governing diphosphine-protected gold nanocluster formation from nascent cationic platforms.
    Pettibone JM; Hudgens JW
    Phys Chem Chem Phys; 2012 Mar; 14(12):4142-54. PubMed ID: 22337143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and thermal responsiveness of self-assembled gold nanoclusters.
    Ren S; Lim SK; Gradecak S
    Chem Commun (Camb); 2010 Sep; 46(34):6246-8. PubMed ID: 20697641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chirality in gold nanoclusters probed by NMR spectroscopy.
    Qian H; Zhu M; Gayathri C; Gil RR; Jin R
    ACS Nano; 2011 Nov; 5(11):8935-42. PubMed ID: 21981416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of size and shape of Au nanoparticles using amino-X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers.
    Goy-López S; Taboada P; Cambón A; Juárez J; Alvarez-Lorenzo C; Concheiro A; Mosquera V
    J Phys Chem B; 2010 Jan; 114(1):66-76. PubMed ID: 19968275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane.
    Zahmakiran M; Ozkar S
    Inorg Chem; 2009 Sep; 48(18):8955-64. PubMed ID: 19702246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites.
    Shervani Z; Yamamoto Y
    Carbohydr Res; 2011 Apr; 346(5):651-8. PubMed ID: 21349499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals.
    Jin R; Zhu Y; Qian H
    Chemistry; 2011 Jun; 17(24):6584-93. PubMed ID: 21590819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ligand symmetry-equivalence on thiolate protected gold nanoclusters determined by NMR spectroscopy.
    Wong OA; Heinecke CL; Simone AR; Whetten RL; Ackerson CJ
    Nanoscale; 2012 Jul; 4(14):4099-102. PubMed ID: 22543449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au₂₅ nanoclusters.
    Luo Z; Nachammai V; Zhang B; Yan N; Leong DT; Jiang DE; Xie J
    J Am Chem Soc; 2014 Jul; 136(30):10577-80. PubMed ID: 25014336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One pot hemimicellar synthesis of amphiphilic Janus gold nanoclusters for novel electronic attributes.
    Biji P; Sarangi NK; Patnaik A
    Langmuir; 2010 Sep; 26(17):14047-57. PubMed ID: 20712349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of Au130(SR)50 and Au(130-x)Ag(x)(SR)50 nanomolecules through core size conversion of larger metal clusters.
    Jupally VR; Dass A
    Phys Chem Chem Phys; 2014 Jun; 16(22):10473-9. PubMed ID: 24733419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and electronic properties of protein/thiolate-protected gold nanocluster with "staple" motif: A XAS, L-DOS, and XPS study.
    Simms GA; Padmos JD; Zhang P
    J Chem Phys; 2009 Dec; 131(21):214703. PubMed ID: 19968356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transformation Chemistry of Gold Nanoclusters: From One Stable Size to Another.
    Zeng C; Chen Y; Das A; Jin R
    J Phys Chem Lett; 2015 Aug; 6(15):2976-86. PubMed ID: 26267191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing near IR luminescence of thiolate Au nanoclusters by thermo treatments and heterogeneous subcellular distributions.
    Conroy CV; Jiang J; Zhang C; Ahuja T; Tang Z; Prickett CA; Yang JJ; Wang G
    Nanoscale; 2014 Jul; 6(13):7416-23. PubMed ID: 24879334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.