These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 21634424)
1. Effects of sediment-associated extractable metals, degree of sediment grain sorting, and dissolved organic carbon upon Cryptosporidium parvum removal and transport within riverbank filtration sediments, Sonoma County, California. Metge DW; Harvey RW; Aiken GR; Anders R; Lincoln G; Jasperse J; Hill MC Environ Sci Technol; 2011 Jul; 45(13):5587-95. PubMed ID: 21634424 [TBL] [Abstract][Full Text] [Related]
2. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA. Metge DW; Harvey RW; Aiken GR; Anders R; Lincoln G; Jasperse J Water Res; 2010 Feb; 44(4):1126-37. PubMed ID: 20116824 [TBL] [Abstract][Full Text] [Related]
3. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media. Mohanram A; Ray C; Harvey RW; Metge DW; Ryan JN; Chorover J; Eberl DD Water Res; 2010 Oct; 44(18):5334-44. PubMed ID: 20637489 [TBL] [Abstract][Full Text] [Related]
4. Removal efficiencies and attachment coefficients for Cryptosporidium in sandy alluvial riverbank sediment. Faulkner BR; Olivas Y; Ware MW; Roberts MG; Groves JF; Bates KS; McCarty SL Water Res; 2010 May; 44(9):2725-34. PubMed ID: 20347113 [TBL] [Abstract][Full Text] [Related]
5. Effect of dissolved organic carbon on the transport and attachment behaviors of Cryptosporidium parvum oocysts and carboxylate-modified microspheres advected through temperate humic and tropical volcanic agricultural soil. Mohanram A; Ray C; Metge DW; Barber LB; Ryan JN; Harvey RW Environ Sci Technol; 2012 Feb; 46(4):2088-94. PubMed ID: 21711011 [TBL] [Abstract][Full Text] [Related]
6. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Butler BA Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291 [TBL] [Abstract][Full Text] [Related]
7. Biotin- and glycoprotein-coated microspheres: potential surrogates for studying filtration of cryptosporidium parvum in porous media. Pang L; Nowostawska U; Weaver L; Hoffman G; Karmacharya A; Skinner A; Karki N Environ Sci Technol; 2012 Nov; 46(21):11779-87. PubMed ID: 22978441 [TBL] [Abstract][Full Text] [Related]
8. Correlations of extractable heavy metals with organic matters in contaminated river sediments. Tsai LJ; Ho ST; Yu KC Water Sci Technol; 2003; 47(9):101-7. PubMed ID: 12830947 [TBL] [Abstract][Full Text] [Related]
9. Seasonal and spatial characteristics of seawater and sediment at Youngil Bay, southeast coast of Korea. Lee M; Bae W; Chung J; Jung HS; Shim H Mar Pollut Bull; 2008; 57(6-12):325-34. PubMed ID: 18514230 [TBL] [Abstract][Full Text] [Related]
10. Deposition of Cryptosporidium oocysts in streambeds. Searcy KE; Packman AI; Atwill ER; Harter T Appl Environ Microbiol; 2006 Mar; 72(3):1810-6. PubMed ID: 16517626 [TBL] [Abstract][Full Text] [Related]
11. Impact of riverbank filtration on treatment of polluted river water. Singh P; Kumar P; Mehrotra I; Grischek T J Environ Manage; 2010 May; 91(5):1055-62. PubMed ID: 20089349 [TBL] [Abstract][Full Text] [Related]
12. Seasonal variations of organic-carbon and nutrient transport through a tropical estuary (Tsengwen) in southwestern Taiwan. Hung JJ; Huang MH Environ Geochem Health; 2005 Feb; 27(1):75-95. PubMed ID: 15688133 [TBL] [Abstract][Full Text] [Related]
13. Multi-scale Cryptosporidium/sand interactions in water treatment. Tufenkji N; Dixon DR; Considine R; Drummond CJ Water Res; 2006 Oct; 40(18):3315-31. PubMed ID: 16979211 [TBL] [Abstract][Full Text] [Related]
14. Atmospheric bulk deposition to the lagoon of Venice Part I. Fluxes of metals, nutrients and organic contaminants. Rossini P; Guerzoni S; Molinaroli E; Rampazzo G; De Lazzari A; Zancanaro A Environ Int; 2005 Sep; 31(7):959-74. PubMed ID: 16019069 [TBL] [Abstract][Full Text] [Related]
15. Association of Cryptosporidium parvum with suspended particles: impact on oocyst sedimentation. Searcy KE; Packman AI; Atwill ER; Harter T Appl Environ Microbiol; 2005 Feb; 71(2):1072-8. PubMed ID: 15691968 [TBL] [Abstract][Full Text] [Related]
16. Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches. Peng SH; Wang WX; Li X; Yen YF Chemosphere; 2004 Nov; 57(8):839-51. PubMed ID: 15488575 [TBL] [Abstract][Full Text] [Related]
17. Chitosan and metal salt coagulant impacts on Cryptosporidium and microsphere removal by filtration. Brown TJ; Emelko MB Water Res; 2009 Feb; 43(2):331-8. PubMed ID: 18996552 [TBL] [Abstract][Full Text] [Related]
18. Removals of cryptosporidium parvum oocysts and cryptosporidium-sized polystyrene microspheres from swimming pool water by diatomaceous earth filtration and perlite-sand filtration. Lu P; Amburgey JE; Hill VR; Murphy JL; Schneeberger CL; Arrowood MJ; Yuan T J Water Health; 2017 Jun; 15(3):374-384. PubMed ID: 28598342 [TBL] [Abstract][Full Text] [Related]
19. Vertical transport of Cryptosporidium parvum oocysts through sediments. Kim SB; Corapcioglu MY Environ Technol; 2002 Dec; 23(12):1435-46. PubMed ID: 12523514 [TBL] [Abstract][Full Text] [Related]
20. Geochemistry of bed and suspended sediment in the Mississippi river system: provenance versus weathering and winnowing. Piper DZ; Ludington S; Duval JS; Taylor HE Sci Total Environ; 2006 Jun; 362(1-3):179-204. PubMed ID: 16143367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]