BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2163482)

  • 1. Comparison of the effect of morphine on locus coeruleus noradrenergic and ventral tegmental area dopaminergic neurons in vitro.
    Seutin V; Franchimont N; Massotte L; Dresse A
    Life Sci; 1990; 46(25):1879-85. PubMed ID: 2163482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of BHT 920 on monoaminergic neurons of the rat brain: an electrophysiological in vivo and in vitro study.
    Seutin V; Scuvée-Moreau J; Giesbers I; Massotte L; Dresse A
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Nov; 342(5):502-7. PubMed ID: 1982557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine.
    Matthews RT; German DC
    Neuroscience; 1984 Mar; 11(3):617-25. PubMed ID: 6717805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buprenorphine and morphine produce equivalent increases in extracellular single unit activity of dopamine neurons in the ventral tegmental area in vivo.
    Grant SJ; Sonti G
    Synapse; 1994 Mar; 16(3):181-7. PubMed ID: 8197580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locus coeruleus unit activity in freely moving cats is increased following systemic morphine administration.
    Rasmussen K; Jacobs BL
    Brain Res; 1985 Oct; 344(2):240-8. PubMed ID: 4041875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The role of group-A10 dopamine neurons of the ventral tegmental area in analgesia evoked by electrocutaneous pain stimulation and morphine].
    Bragin EO; Batueva NN; Vasilenko GF
    Patol Fiziol Eksp Ter; 1990; (3):11-3. PubMed ID: 2399031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological effects of ethanol on monoaminergic neurons: an in vivo and in vitro study.
    Verbanck P; Seutin V; Dresse A; Scuvée J; Massotte L; Giesbers I; Kornreich C
    Alcohol Clin Exp Res; 1990 Oct; 14(5):728-35. PubMed ID: 2176067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-2 receptor-mediated inhibition by a substituted quinolinone derivative, 7-[3-(4-(2,3-dimethylphenyl)piperazinyl)propoxy]-2(1H)-quinolinone (OPC-4392), of dopaminergic neurons in the ventral tegmental area.
    Momiyama T; Sasa M; Takaori S
    Life Sci; 1990; 47(9):761-9. PubMed ID: 1977066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition by talipexole, a thiazolo-azepine derivative, of dopaminergic neurons in the ventral tegmental area.
    Momiyama T; Sasa M; Takaori S
    Life Sci; 1991; 49(7):535-43. PubMed ID: 1677740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphine tolerance and dependence in the locus coeruleus: single cell studies in brain slices.
    Andrade R; Vandermaelen CP; Aghajanian GK
    Eur J Pharmacol; 1983 Jul; 91(2-3):161-9. PubMed ID: 6684572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex.
    Mantz J; Milla C; Glowinski J; Thierry AM
    Neuroscience; 1988 Nov; 27(2):517-26. PubMed ID: 3146033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute administration of the antidepressant trazodone increases noradrenergic locus coeruleus neuronal firing in rats.
    VanderMaelen CP; Braselton JP
    Arch Int Pharmacodyn Ther; 1990; 308():13-20. PubMed ID: 2099132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphine increases locus coeruleus noradrenergic neuronal activity in vitro.
    Trulson ME; Arasteh K
    Eur J Pharmacol; 1986 May; 124(1-2):189-92. PubMed ID: 3720839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local opiate withdrawal in locus coeruleus neurons in vitro.
    Ivanov A; Aston-Jones G
    J Neurophysiol; 2001 Jun; 85(6):2388-97. PubMed ID: 11387385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological effects of neurotensin on dopaminergic neurones of the ventral tegmental area of the rat in vitro.
    Seutin V; Massotte L; Dresse A
    Neuropharmacology; 1989 Sep; 28(9):949-54. PubMed ID: 2572997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blockade of alpha 2-adrenergic receptors, but not blockade of gamma-aminobutyric acidA, serotonin, or opiate receptors, augments responsiveness of locus coeruleus neurons to excitatory stimulation.
    Simson PE; Weiss JM
    Neuropharmacology; 1989 Jul; 28(7):651-60. PubMed ID: 2569689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noradrenergic Modulation of Dopamine Transmission Evoked by Electrical Stimulation of the Locus Coeruleus in the Rat Brain.
    Park JW; Bhimani RV; Park J
    ACS Chem Neurosci; 2017 Sep; 8(9):1913-1924. PubMed ID: 28594540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation of acute and chronic effects of morphine by the imidazoline receptor ligand 2-(2-benzofuranyl)-2-imidazoline in rat locus coeruleus neurons.
    Ruiz-Durántez E; Torrecilla M; Pineda J; Ugedo L
    Br J Pharmacol; 2003 Feb; 138(3):494-500. PubMed ID: 12569074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic naltrexone increases opiate binding in brain and produces supersensitivity to morphine in the locus coeruleus of the rat.
    Bardo MT; Bhatnagar RK; Gebhart GF
    Brain Res; 1983 Dec; 289(1-2):223-34. PubMed ID: 6318895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal 6-hydroxydopamine destroys spinal cord noradrenergic axons from the locus coeruleus, but not those from lateral tegmental cell groups.
    McBride RL; Ozment RV; Sutin J
    J Comp Neurol; 1985 May; 235(3):375-83. PubMed ID: 3923062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.