These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 2163482)
1. Comparison of the effect of morphine on locus coeruleus noradrenergic and ventral tegmental area dopaminergic neurons in vitro. Seutin V; Franchimont N; Massotte L; Dresse A Life Sci; 1990; 46(25):1879-85. PubMed ID: 2163482 [TBL] [Abstract][Full Text] [Related]
2. Effect of BHT 920 on monoaminergic neurons of the rat brain: an electrophysiological in vivo and in vitro study. Seutin V; Scuvée-Moreau J; Giesbers I; Massotte L; Dresse A Naunyn Schmiedebergs Arch Pharmacol; 1990 Nov; 342(5):502-7. PubMed ID: 1982557 [TBL] [Abstract][Full Text] [Related]
3. Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Matthews RT; German DC Neuroscience; 1984 Mar; 11(3):617-25. PubMed ID: 6717805 [TBL] [Abstract][Full Text] [Related]
4. Buprenorphine and morphine produce equivalent increases in extracellular single unit activity of dopamine neurons in the ventral tegmental area in vivo. Grant SJ; Sonti G Synapse; 1994 Mar; 16(3):181-7. PubMed ID: 8197580 [TBL] [Abstract][Full Text] [Related]
5. Locus coeruleus unit activity in freely moving cats is increased following systemic morphine administration. Rasmussen K; Jacobs BL Brain Res; 1985 Oct; 344(2):240-8. PubMed ID: 4041875 [TBL] [Abstract][Full Text] [Related]
6. [The role of group-A10 dopamine neurons of the ventral tegmental area in analgesia evoked by electrocutaneous pain stimulation and morphine]. Bragin EO; Batueva NN; Vasilenko GF Patol Fiziol Eksp Ter; 1990; (3):11-3. PubMed ID: 2399031 [TBL] [Abstract][Full Text] [Related]
7. Electrophysiological effects of ethanol on monoaminergic neurons: an in vivo and in vitro study. Verbanck P; Seutin V; Dresse A; Scuvée J; Massotte L; Giesbers I; Kornreich C Alcohol Clin Exp Res; 1990 Oct; 14(5):728-35. PubMed ID: 2176067 [TBL] [Abstract][Full Text] [Related]
8. D-2 receptor-mediated inhibition by a substituted quinolinone derivative, 7-[3-(4-(2,3-dimethylphenyl)piperazinyl)propoxy]-2(1H)-quinolinone (OPC-4392), of dopaminergic neurons in the ventral tegmental area. Momiyama T; Sasa M; Takaori S Life Sci; 1990; 47(9):761-9. PubMed ID: 1977066 [TBL] [Abstract][Full Text] [Related]
9. Inhibition by talipexole, a thiazolo-azepine derivative, of dopaminergic neurons in the ventral tegmental area. Momiyama T; Sasa M; Takaori S Life Sci; 1991; 49(7):535-43. PubMed ID: 1677740 [TBL] [Abstract][Full Text] [Related]
10. Morphine tolerance and dependence in the locus coeruleus: single cell studies in brain slices. Andrade R; Vandermaelen CP; Aghajanian GK Eur J Pharmacol; 1983 Jul; 91(2-3):161-9. PubMed ID: 6684572 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex. Mantz J; Milla C; Glowinski J; Thierry AM Neuroscience; 1988 Nov; 27(2):517-26. PubMed ID: 3146033 [TBL] [Abstract][Full Text] [Related]
12. Acute administration of the antidepressant trazodone increases noradrenergic locus coeruleus neuronal firing in rats. VanderMaelen CP; Braselton JP Arch Int Pharmacodyn Ther; 1990; 308():13-20. PubMed ID: 2099132 [TBL] [Abstract][Full Text] [Related]
13. Morphine increases locus coeruleus noradrenergic neuronal activity in vitro. Trulson ME; Arasteh K Eur J Pharmacol; 1986 May; 124(1-2):189-92. PubMed ID: 3720839 [TBL] [Abstract][Full Text] [Related]
14. Local opiate withdrawal in locus coeruleus neurons in vitro. Ivanov A; Aston-Jones G J Neurophysiol; 2001 Jun; 85(6):2388-97. PubMed ID: 11387385 [TBL] [Abstract][Full Text] [Related]
15. Electrophysiological effects of neurotensin on dopaminergic neurones of the ventral tegmental area of the rat in vitro. Seutin V; Massotte L; Dresse A Neuropharmacology; 1989 Sep; 28(9):949-54. PubMed ID: 2572997 [TBL] [Abstract][Full Text] [Related]
16. Blockade of alpha 2-adrenergic receptors, but not blockade of gamma-aminobutyric acidA, serotonin, or opiate receptors, augments responsiveness of locus coeruleus neurons to excitatory stimulation. Simson PE; Weiss JM Neuropharmacology; 1989 Jul; 28(7):651-60. PubMed ID: 2569689 [TBL] [Abstract][Full Text] [Related]
17. Noradrenergic Modulation of Dopamine Transmission Evoked by Electrical Stimulation of the Locus Coeruleus in the Rat Brain. Park JW; Bhimani RV; Park J ACS Chem Neurosci; 2017 Sep; 8(9):1913-1924. PubMed ID: 28594540 [TBL] [Abstract][Full Text] [Related]
18. Attenuation of acute and chronic effects of morphine by the imidazoline receptor ligand 2-(2-benzofuranyl)-2-imidazoline in rat locus coeruleus neurons. Ruiz-Durántez E; Torrecilla M; Pineda J; Ugedo L Br J Pharmacol; 2003 Feb; 138(3):494-500. PubMed ID: 12569074 [TBL] [Abstract][Full Text] [Related]
19. Chronic naltrexone increases opiate binding in brain and produces supersensitivity to morphine in the locus coeruleus of the rat. Bardo MT; Bhatnagar RK; Gebhart GF Brain Res; 1983 Dec; 289(1-2):223-34. PubMed ID: 6318895 [TBL] [Abstract][Full Text] [Related]
20. Neonatal 6-hydroxydopamine destroys spinal cord noradrenergic axons from the locus coeruleus, but not those from lateral tegmental cell groups. McBride RL; Ozment RV; Sutin J J Comp Neurol; 1985 May; 235(3):375-83. PubMed ID: 3923062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]