BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21635898)

  • 1. Exploring the Structure-Function Loop Adaptability of a (β/α)(8)-Barrel Enzyme through Loop Swapping and Hinge Variability.
    Ochoa-Leyva A; Barona-Gómez F; Saab-Rincón G; Verdel-Aranda K; Sánchez F; Soberón X
    J Mol Biol; 2011 Aug; 411(1):143-57. PubMed ID: 21635898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein design through systematic catalytic loop exchange in the (beta/alpha)8 fold.
    Ochoa-Leyva A; Soberón X; Sánchez F; Argüello M; Montero-Morán G; Saab-Rincón G
    J Mol Biol; 2009 Apr; 387(4):949-64. PubMed ID: 19233201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of (βα)(8)-barrel enzymes: establishing phosphoribosylanthranilate isomerisation activity on the scaffold of the tryptophan synthase α-subunit.
    Evran S; Telefoncu A; Sterner R
    Protein Eng Des Sel; 2012 Jun; 25(6):285-93. PubMed ID: 22490958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution of new catalytic activity using the alpha/beta-barrel scaffold.
    Altamirano MM; Blackburn JM; Aguayo C; Fersht AR
    Nature; 2000 Feb; 403(6770):617-22. PubMed ID: 10688189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New wine from old barrels.
    Gerlt JA
    Nat Struct Biol; 2000 Mar; 7(3):171-3. PubMed ID: 10700266
    [No Abstract]   [Full Text] [Related]  

  • 6. In vitro selection and characterization of a stable subdomain of phosphoribosylanthranilate isomerase.
    Patrick WM; Blackburn JM
    FEBS J; 2005 Jul; 272(14):3684-97. PubMed ID: 16008567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of variability by in vivo recombination of halves of a (beta/alpha)8 barrel protein.
    Saab-Rincón G; Mancera E; Montero-Morán G; Sánchez F; Soberón X
    Biomol Eng; 2005 Oct; 22(4):113-20. PubMed ID: 16125117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence for the existence of a stable half-barrel subdomain in the (beta/alpha)8-barrel fold.
    Akanuma S; Yamagishi A
    J Mol Biol; 2008 Oct; 382(2):458-66. PubMed ID: 18674541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution.
    Korndörfer IP; Fessner WD; Matthews BW
    J Mol Biol; 2000 Jul; 300(4):917-33. PubMed ID: 10891278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming a (beta/alpha)8--barrel enzyme into a split-protein sensor through directed evolution.
    Tafelmeyer P; Johnsson N; Johnsson K
    Chem Biol; 2004 May; 11(5):681-9. PubMed ID: 15157879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles for the two N-terminal (β/α) modules in the folding of a (β/α)₈-barrel protein as studied by fragmentation analysis.
    Akanuma S; Yamagishi A
    Proteins; 2011 Jan; 79(1):221-31. PubMed ID: 21058300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of YihS in complex with D-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to an aldose-ketose isomerase.
    Itoh T; Mikami B; Hashimoto W; Murata K
    J Mol Biol; 2008 Apr; 377(5):1443-59. PubMed ID: 18328504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A detailed unfolding pathway of a (beta/alpha)8-barrel protein as studied by molecular dynamics simulations.
    Akanuma S; Miyagawa H; Kitamura K; Yamagishi A
    Proteins; 2005 Feb; 58(3):538-46. PubMed ID: 15614829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evolution of new catalytic activity with an existing protein scaffold.
    Park HS; Nam SH; Lee JK; Yoon CN; Mannervik B; Benkovic SJ; Kim HS
    Science; 2006 Jan; 311(5760):535-8. PubMed ID: 16439663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure prediction and functional analysis of KdsD, an enzyme involved in lipopolysaccharide biosynthesis.
    Sommaruga S; Gioia LD; Tortora P; Polissi A
    Biochem Biophys Res Commun; 2009 Oct; 388(2):222-7. PubMed ID: 19664604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent evolution of function in the ROK sugar kinase superfamily: role of enzyme loops in substrate specificity.
    Larion M; Moore LB; Thompson SM; Miller BG
    Biochemistry; 2007 Nov; 46(47):13564-72. PubMed ID: 17979299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase.
    Bustos-Jaimes I; Sosa-Peinado A; Rudiño-Piñera E; Horjales E; Calcagno ML
    J Mol Biol; 2002 May; 319(1):183-9. PubMed ID: 12051945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of key substructures involved in the early folding events of a (beta/alpha)8-barrel protein as studied by experimental and computational methods.
    Akanuma S; Yamagishi A
    J Mol Biol; 2005 Nov; 353(5):1161-70. PubMed ID: 16216267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of the Escherichia coli Im7 immunity protein as a loop display scaffold.
    Juraja SM; Mulhern TD; Hudson PJ; Hattarki MK; Carmichael JA; Nuttall SD
    Protein Eng Des Sel; 2006 May; 19(5):231-44. PubMed ID: 16549402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating functional loop movements: the role of highly conserved residues in the correlated loop motions.
    Gunasekaran K; Nussinov R
    Chembiochem; 2004 Feb; 5(2):224-30. PubMed ID: 14760744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.