These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21636126)

  • 1. Functional fibrils derived from the peptide TTR1-cycloRGDfK that target cell adhesion and spreading.
    Bongiovanni MN; Scanlon DB; Gras SL
    Biomaterials; 2011 Sep; 32(26):6099-110. PubMed ID: 21636126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncore residues influence the kinetics of functional TTR(105-115)-based amyloid fibril assembly.
    Bongiovanni MN; Puri D; Goldie KN; Gras SL
    J Mol Biol; 2012 Aug; 421(2-3):256-69. PubMed ID: 22198409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic topography and chemistry control cell attachment to amyloid fibrils.
    Reynolds NP; Charnley M; Bongiovanni MN; Hartley PG; Gras SL
    Biomacromolecules; 2015 May; 16(5):1556-65. PubMed ID: 25871317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive TTR105-115-based amyloid fibrils reduce the viability of mammalian cells.
    Bongiovanni MN; Gras SL
    Biomaterials; 2015 Apr; 46():105-16. PubMed ID: 25678120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalised amyloid fibrils for roles in cell adhesion.
    Gras SL; Tickler AK; Squires AM; Devlin GL; Horton MA; Dobson CM; MacPhee CE
    Biomaterials; 2008 Apr; 29(11):1553-62. PubMed ID: 18164758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale surface self-assembly of an amyloid-like peptide.
    Lepère M; Chevallard C; Hernandez JF; Mitraki A; Guenoun P
    Langmuir; 2007 Jul; 23(15):8150-5. PubMed ID: 17579468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and activity of multifunctional fibrils using receptor-specific small peptides.
    Ohga Y; Katagiri F; Takeyama K; Hozumi K; Kikkawa Y; Nishi N; Nomizu M
    Biomaterials; 2009 Dec; 30(35):6731-8. PubMed ID: 19765823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for in vitro assembled transthyretin amyloid-like fibrils.
    Cardoso I; Goldsbury CS; Müller SA; Olivieri V; Wirtz S; Damas AM; Aebi U; Saraiva MJ
    J Mol Biol; 2002 Apr; 317(5):683-95. PubMed ID: 11955017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol induced the formation of β-sheet and amyloid-like fibrils by surfactant-like peptide A6K.
    Chen Y; Tang C; Xing Z; Zhang J; Qiu F
    J Pept Sci; 2013 Nov; 19(11):708-16. PubMed ID: 24105725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro characterization of lactoferrin aggregation and amyloid formation.
    Nilsson MR; Dobson CM
    Biochemistry; 2003 Jan; 42(2):375-82. PubMed ID: 12525164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study.
    Çakmak S; Çakmak AS; Gümüşderelioğlu M
    Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscopy.
    Paulite M; Fakhraai Z; Li IT; Gunari N; Tanur AE; Walker GC
    J Am Chem Soc; 2011 May; 133(19):7376-83. PubMed ID: 21524071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural organization of amyloid fibrils by atomic force microscopy.
    Chamberlain AK; MacPhee CE; Zurdo J; Morozova-Roche LA; Hill HA; Dobson CM; Davis JJ
    Biophys J; 2000 Dec; 79(6):3282-93. PubMed ID: 11106631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between elastin-like peptides and an insulating poly(ortho-aminophenol) membrane investigated by AFM and XPS.
    Carbone ME; Ciriello R; Moscarelli P; Boraldi F; Bianco G; Guerrieri A; Bochicchio B; Pepe A; Quaglino D; Salvi AM
    Anal Bioanal Chem; 2018 Aug; 410(20):4925-4941. PubMed ID: 29978250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties.
    Tenidis K; Waldner M; Bernhagen J; Fischle W; Bergmann M; Weber M; Merkle ML; Voelter W; Brunner H; Kapurniotu A
    J Mol Biol; 2000 Jan; 295(4):1055-71. PubMed ID: 10656810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils.
    Inoue M; Konno T; Tainaka K; Nakata E; Yoshida HO; Morii T
    Biochemistry; 2012 Feb; 51(7):1396-406. PubMed ID: 22304362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlative infrared nanospectroscopy and transmission electron microscopy to investigate nanometric amyloid fibrils: prospects and challenges.
    Partouche D; Mathurin J; Malabirade A; Marco S; Sandt C; Arluison V; Deniset-Besseau A; Trépout S
    J Microsc; 2019 Apr; 274(1):23-31. PubMed ID: 30649833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy.
    vandenAkker CC; Deckert-Gaudig T; Schleeger M; Velikov KP; Deckert V; Bonn M; Koenderink GH
    Small; 2015 Sep; 11(33):4131-9. PubMed ID: 25952953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additional supra-self-assembly of human serum albumin under amyloid-like-forming solution conditions.
    Juárez J; Taboada P; Goy-López S; Cambón A; Madec MB; Yeates SG; Mosquera V
    J Phys Chem B; 2009 Sep; 113(36):12391-9. PubMed ID: 19681594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation of spherulites by amyloid fibrils of bovine insulin.
    Krebs MR; Macphee CE; Miller AF; Dunlop IE; Dobson CM; Donald AM
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14420-4. PubMed ID: 15381766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.