These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21636308)

  • 21. Detection of daily postures and walking modalities using a single chest-mounted tri-axial accelerometer.
    Nazarahari M; Rouhani H
    Med Eng Phys; 2018 Jul; 57():75-81. PubMed ID: 29691130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
    Ohkawara K; Oshima Y; Hikihara Y; Ishikawa-Takata K; Tabata I; Tanaka S
    Br J Nutr; 2011 Jun; 105(11):1681-91. PubMed ID: 21262061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A body-fixed-sensor-based analysis of power during sit-to-stand movements.
    Zijlstra W; Bisseling RW; Schlumbohm S; Baldus H
    Gait Posture; 2010 Feb; 31(2):272-8. PubMed ID: 19963386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time gait event detection using wearable sensors.
    Hanlon M; Anderson R
    Gait Posture; 2009 Nov; 30(4):523-7. PubMed ID: 19729307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring.
    Massé F; Bourke AK; Chardonnens J; Paraschiv-Ionescu A; Aminian K
    Med Eng Phys; 2014 Jun; 36(6):739-44. PubMed ID: 24485500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the validity of a single tri-axial accelerometer mounted on the head for monitoring the activities of daily living and the timed-up and go test.
    Abdollah V; Dief TN; Ralston J; Ho C; Rouhani H
    Gait Posture; 2021 Oct; 90():137-140. PubMed ID: 34481263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of waist-worn tri-axial accelerometer based fall-detection algorithms using continuous unsupervised activities.
    Bourke AK; van de Ven P; Gamble M; O'Connor R; Murphy K; Bogan E; McQuade E; Finucane P; Olaighin G; Nelson J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2782-5. PubMed ID: 21095967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fall-detection through vertical velocity thresholding using a tri-axial accelerometer characterized using an optical motion-capture system.
    Bourke AK; O'Donovan KJ; Nelson J; OLaighin GM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2832-5. PubMed ID: 19163295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A wearable system for pre-impact fall detection.
    Nyan MN; Tay FE; Murugasu E
    J Biomech; 2008 Dec; 41(16):3475-81. PubMed ID: 18996529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of methods to detect postural transitions using a single tri-axial accelerometer.
    Godfrey A; Barry G; Mathers JC; Rochester L
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6234-7. PubMed ID: 25571421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis.
    Howe CA; Staudenmayer JW; Freedson PS
    Med Sci Sports Exerc; 2009 Dec; 41(12):2199-206. PubMed ID: 19915498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A pilot study of long-term monitoring of human movements in the home using accelerometry.
    Mathie MJ; Coster AC; Lovell NH; Celler BG; Lord SR; Tiedemann A
    J Telemed Telecare; 2004; 10(3):144-51. PubMed ID: 15165439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of an automated physical activity classification application for mobile phones.
    Xia Y; Cheung V; Garcia E; Ding H; Karunaithi M
    Stud Health Technol Inform; 2011; 168():188-94. PubMed ID: 21893928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection and classification of postural transitions in real-world conditions.
    Ganea R; Paraschiv-lonescu A; Aminian K
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):688-96. PubMed ID: 22692942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers.
    Aziz O; Park EJ; Mori G; Robinovitch SN
    Gait Posture; 2014; 39(1):506-12. PubMed ID: 24148648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detecting motor vehicle travel in accelerometer data.
    Cohen MD; Cutaia M; Brehm R; Brutus V; Pike VC; Lewendowski D
    COPD; 2012 Apr; 9(2):102-10. PubMed ID: 22409288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can accelerometry be used to discriminate levels of activity?
    Hendrick P; Bell ML; Bagge PJ; Milosavljevic S
    Ergonomics; 2009 Aug; 52(8):1019-25. PubMed ID: 19629816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of falls using accelerometers and mobile phone technology.
    Lee RY; Carlisle AJ
    Age Ageing; 2011 Nov; 40(6):690-6. PubMed ID: 21596711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.