These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 21636412)

  • 1. Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functional diversity of a narrow sagebrush hybrid zone in Salt Creek Canyon, Utah.
    Miglia KJ; McArthur ED; Redman RS; Rodriguez RJ; Zak JC; Freeman DC
    Am J Bot; 2007 Mar; 94(3):425-36. PubMed ID: 21636412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae) : XII. Galls on sagebrush in a reciprocal transplant garden.
    Graham JH; McArthur ED; Freeman DC
    Oecologia; 2001 Jan; 126(2):239-246. PubMed ID: 28547623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Narrow hybrid zone between two subspecies of big sagebrush (ARTEMISIA TRIDENTATA: Asteraceae). IX. Elemental uptake and niche separation.
    Wang H; McArthur ED; Freeman DC
    Am J Bot; 1999 Aug; 86(8):1099-107. PubMed ID: 10449388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NARROW HYBRID ZONE BETWEEN TWO SUBSPECIES OF BIG SAGEBRUSH (ARTEMISIA TRIDENTATA: ASTERACEAE). IV. RECIPROCAL TRANSPLANT EXPERIMENTS.
    Wang H; McArthur ED; Sanderson SC; Graham JH; Freeman DC
    Evolution; 1997 Feb; 51(1):95-102. PubMed ID: 28568779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symbiotic regulation of plant growth, development and reproduction.
    Rodriguez RJ; Freeman DC; McArthur ED; Kim YO; Redman RS
    Commun Integr Biol; 2009; 2(2):141-3. PubMed ID: 19704912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is the Prunella (Lamiaceae) hybrid zone structured by an environmental gradient? Evidence from a reciprocaltransplant experiment.
    Fritsche F; Kaltz O
    Am J Bot; 2000 Jul; 87(7):995-1003. PubMed ID: 10898777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fitness and genetic architecture of parent and hybrid willows in common gardens.
    Fritz RS; Hochwender CG; Albrectsen BR; Czesak ME
    Evolution; 2006 Jun; 60(6):1215-27. PubMed ID: 16892972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of heterosis and epistasis to hybrid fitness.
    Rhode JM; Cruzan MB
    Am Nat; 2005 Nov; 166(5):E124-39. PubMed ID: 16224715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable responses of insects to hybrid versus parental sagebrush in common gardens.
    Messina FJ; Richards JH; McArthur ED
    Oecologia; 1996 Sep; 107(4):513-521. PubMed ID: 28307395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edaphic adaptation maintains the coexistence of two cryptic species on serpentine soils.
    Yost JM; Barry T; Kay KM; Rajakaruna N
    Am J Bot; 2012 May; 99(5):890-7. PubMed ID: 22539516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary dynamics of an Ipomopsis hybrid zone: confronting models with lifetime fitness data.
    Campbell DR; Waser NM
    Am Nat; 2007 Mar; 169(3):298-310. PubMed ID: 17252512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host plant genotype influences survival of hybrids between Eurosta solidaginis host races.
    Craig TP; Itami JK; Craig JV
    Evolution; 2007 Nov; 61(11):2607-13. PubMed ID: 17725623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genetic basis of adaptive population differentiation: a quantitative trait locus analysis of fitness traits in two wild barley populations from contrasting habitats.
    Verhoeven KJ; Vanhala TK; Biere A; Nevo E; van Damme JM
    Evolution; 2004 Feb; 58(2):270-83. PubMed ID: 15068345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotype-by-environment interaction and the fitness of plant hybrids in the wild.
    Campbell DR; Waser NM
    Evolution; 2001 Apr; 55(4):669-76. PubMed ID: 11392384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are hybrid species more fit than ancestral parent species in the current hybrid species habitats?
    Donovan LA; Rosenthal DR; Sanchez-Velenosi M; Rieseberg LH; Ludwig F
    J Evol Biol; 2010 Apr; 23(4):805-16. PubMed ID: 20210826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AN EMPIRICAL TEST OF PREDICTIONS OF TWO COMPETING MODELS FOR THE MAINTENANCE AND FATE OF HYBRID ZONES: BOTH MODELS ARE SUPPORTED IN A HARD-CLAM HYBRID ZONE.
    Bert TM; Arnold WS
    Evolution; 1995 Apr; 49(2):276-289. PubMed ID: 28564997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fitness consequences of hybridization between ecotypes of Avena barbata: hybrid breakdown, hybrid vigor, and transgressive segregation.
    Johansen-Morris AD; Latta RG
    Evolution; 2006 Aug; 60(8):1585-95. PubMed ID: 17017059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local adaptation, phenotypic differentiation, and hybrid fitness in diverged natural populations of Arabidopsis lyrata.
    Leinonen PH; Remington DL; Savolainen O
    Evolution; 2011 Jan; 65(1):90-107. PubMed ID: 20812972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf physiology reflects environmental differences and cytoplasmic background in Ipomopsis (Polemoniaceae) hybrids.
    Wu CA; Campbell DR
    Am J Bot; 2007 Nov; 94(11):1804-12. PubMed ID: 21636375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maternal and paternal contributions to the fitness of hybrids between red and white mulberry (Morus, Moraceae).
    Burgess KS; Husband BC
    Am J Bot; 2004 Nov; 91(11):1802-8. PubMed ID: 21652327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.