These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 21636475)

  • 1. Do epidermal lens cells facilitate the absorptance of diffuse light?
    Brodersen CR; Vogelmann TC
    Am J Bot; 2007 Jul; 94(7):1061-6. PubMed ID: 21636475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the optical properties of leaves under diffuse light.
    Gorton HL; Brodersen CR; Williams WE; Vogelmann TC
    Photochem Photobiol; 2010; 86(5):1076-83. PubMed ID: 20553406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal.
    Brodersen CR; Vogelmann TC; Williams WE; Gorton HL
    Plant Cell Environ; 2008 Jan; 31(1):159-64. PubMed ID: 18028265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf architecture and direction of incident light influence mesophyll fluorescence profiles.
    Johnson DM; Smith WK; Vogelmann TC; Brodersen CR
    Am J Bot; 2005 Sep; 92(9):1425-31. PubMed ID: 21646160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Leaf anatomy of the mosaic ficus benjamina cv. Starlight and interaction of source and sink chimera components].
    Labunskaia EA; Zhigalova TV; Chub VV
    Ontogenez; 2007; 38(6):471-80. PubMed ID: 18179027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of kaolin application on light absorption and distribution, radiation use efficiency and photosynthesis of almond and walnut canopies.
    Rosati A; Metcalf SG; Buchner RP; Fulton AE; Lampinen BD
    Ann Bot; 2007 Feb; 99(2):255-63. PubMed ID: 17138580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability in leaf optical properties among 26 species from a broad range of habitats.
    Knapp A; Carter G
    Am J Bot; 1998 Jul; 85(7):940. PubMed ID: 21684977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants.
    Pearcy RW; Yang W
    Oecologia; 1996 Oct; 108(1):1-12. PubMed ID: 28307727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in leaf optical properties associated with light-dependent chloroplast movements.
    Davis PA; Caylor S; Whippo CW; Hangarter RP
    Plant Cell Environ; 2011 Dec; 34(12):2047-59. PubMed ID: 21819411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.
    Terashima I; Fujita T; Inoue T; Chow WS; Oguchi R
    Plant Cell Physiol; 2009 Apr; 50(4):684-97. PubMed ID: 19246458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the sensitivity of absorbed light and incident light profile to various canopy architecture and stand conditions.
    Kim HS; Palmroth S; Thérézien M; Stenberg P; Oren R
    Tree Physiol; 2011 Jan; 31(1):30-47. PubMed ID: 21389000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergence in light capture efficiencies among tropical forest understory plants with contrasting crown architectures: a case of morphological compensation.
    Valladares F; Skillman JB; Pearcy RW
    Am J Bot; 2002 Aug; 89(8):1275-84. PubMed ID: 21665729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analyses of leaf anatomy of dicotyledonous species in Tibetan and Inner Mongolian grasslands.
    Ma J; Ji C; Han M; Zhang T; Yan X; Hu D; Zeng H; He J
    Sci China Life Sci; 2012 Jan; 55(1):68-79. PubMed ID: 22314493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional role of red (retro)-carotenoids as passive light filters in the leaves of Buxus sempervirens L.: increased protection of photosynthetic tissues?
    Hormaetxe K; Becerril JM; Fleck I; Pintó M; García-Plazaola JI
    J Exp Bot; 2005 Oct; 56(420):2629-36. PubMed ID: 16105855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light scattering in stacked mesophyll cells results in similarity characteristic of solar spectral reflectance and transmittance of natural leaves.
    Xu K; Ye H
    Sci Rep; 2023 Mar; 13(1):4694. PubMed ID: 36949090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The analysis of the causes of variability of the relationship between leaf dry mass and area in plants].
    Vasfilov SP
    Zh Obshch Biol; 2011; 72(6):436-54. PubMed ID: 22292282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of the ratio between the photosynthesis parameters p(ml)and v(cmax)for scaling up photosynthesis of C(3)Plants from leaves to canopies: A critical examination of different modelling approaches.
    Wohlfahrt G; Bahn M; Cernusca A
    J Theor Biol; 1999 Sep; 200(2):163-81. PubMed ID: 10504283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of epidermal windows on the light environment within the leaves of six succulents.
    Egbert KJ; Martin CE; Vogelmann TC
    J Exp Bot; 2008; 59(7):1863-73. PubMed ID: 18436541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffuse light and wheat radiation-use efficiency in a controlled environment.
    Tubiello F; Volk T; Bugbee B
    Life Support Biosph Sci; 1997; 4(1-2):77-85. PubMed ID: 11540456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients.
    Cordón GB; Lagorio MG
    Photochem Photobiol Sci; 2007 Aug; 6(8):873-82. PubMed ID: 17668118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.