These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 21636484)

  • 1. Pollen tube growth in association with a dry-type stigmatic transmitting tissue and extragynoecial compitum in the basal angiosperm Kadsura longipedunculata (Schisandraceae).
    Lyew J; Li Z; Liang-Chen Y; Yi-Bo L; Sage TL
    Am J Bot; 2007 Jul; 94(7):1170-82. PubMed ID: 21636484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercarpellary growth of pollen tubes in the extragynoecial compitum and its contribution to fruit set in an apocarpous species, Schisandra sphenanthera (Schisandraceae).
    Du W; Wang XF
    Am J Bot; 2012 May; 99(5):961-6. PubMed ID: 22539512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmitting tissue ECM distribution and composition, and pollen germinability in Sarcandra glabra and Chloranthus japonicus (Chloranthaceae).
    Hristova K; Lam M; Feild T; Sage TL
    Ann Bot; 2005 Oct; 96(5):779-91. PubMed ID: 16046459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmitting tissue architecture in basal-relictual angiosperms: Implications for transmitting tissue origins.
    Sage TL; Hristova-Sarkovski K; Koehl V; Lyew J; Pontieri V; Bernhardt P; Weston P; Bagha S; Chiu G
    Am J Bot; 2009 Jan; 96(1):183-206. PubMed ID: 21628183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stigmatic exudate in the Annonaceae: Pollinator reward, pollen germination medium or extragynoecial compitum?
    Lau JYY; Pang CC; Ramsden L; Saunders RMK
    J Integr Plant Biol; 2017 Dec; 59(12):881-894. PubMed ID: 28880427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conspecific pollen advantage mediated by the extragynoecial compitum and its potential to resist interspecific reproductive interference between two
    Fei CH; Tang SS; Shang SH; Dai J; Wang XY; Wang S; Liu WQ; Wang XF
    Front Plant Sci; 2022; 13():956193. PubMed ID: 35937372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pollination in species with dry stigmas: the nature of the early stigmatic response and the pathway taken by pollen tubes.
    Elleman CJ; Franklin-Tong V; Dickinson HG
    New Phytol; 1992 Jul; 121(3):413-424. PubMed ID: 33874153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique stigmatic hairs and pollen-tube growth within the stigmatic cell wall in the early-divergent angiosperm family Hydatellaceae.
    Prychid CJ; Sokoloff DD; Remizowa MV; Tuckett RE; Yadav SR; Rudall PJ
    Ann Bot; 2011 Sep; 108(4):599-608. PubMed ID: 21320877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipids are required for directional pollen-tube growth.
    Wolters-Arts M; Lush WM; Mariani C
    Nature; 1998 Apr; 392(6678):818-21. PubMed ID: 9572141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The distribution of calcium in the stigma and style of tobacco during pollen germination and tube growth].
    Xie CT; Qiu YL; Ge LL; Chen SH; Tian HQ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):53-61. PubMed ID: 15692179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asynchronous development of stigmatic receptivity in the pear (Pyrus communis; Rosaceae) flower.
    Sanzol J; Rallo P; Herrero M
    Am J Bot; 2003 Jan; 90(1):78-84. PubMed ID: 21659082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pollen-pistil interaction in pawpaw (
    Losada JM; Hormaza JI; Lora J
    Am J Bot; 2017 Dec; 104(12):1891-1903. PubMed ID: 29217674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase.
    Williams JH
    Am J Bot; 2009 Jan; 96(1):144-65. PubMed ID: 21628181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative proteomic analysis reveals similar and distinct features of proteins in dry and wet stigmas.
    Sang YL; Xu M; Ma FF; Chen H; Xu XH; Gao XQ; Zhang XS
    Proteomics; 2012 Jun; 12(12):1983-98. PubMed ID: 22623354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure and development of incompletely closed carpels in an apocarpous species, Sagittaria trifolia (Alismataceae).
    Huang LJ; Wang XW; Wang XF
    Am J Bot; 2014 Jul; 101(7):1229-1234. PubMed ID: 25030350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollination biology of basal angiosperms (ANITA grade).
    Thien LB; Bernhardt P; Devall MS; Chen ZD; Luo YB; Fan JH; Yuan LC; Williams JH
    Am J Bot; 2009 Jan; 96(1):166-82. PubMed ID: 21628182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum.
    Chen D; Zhao J
    Physiol Plant; 2008 Sep; 134(1):202-15. PubMed ID: 18485059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing the ancestral angiosperm flower and its initial specializations.
    Endress PK; Doyle JA
    Am J Bot; 2009 Jan; 96(1):22-66. PubMed ID: 21628175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach.
    Hedhly A; Hormaza JI; Herrero M
    Plant Biol (Stuttg); 2005 Sep; 7(5):476-83. PubMed ID: 16163612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana.
    Crawford BC; Ditta G; Yanofsky MF
    Curr Biol; 2007 Jul; 17(13):1101-8. PubMed ID: 17600712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.