BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21636649)

  • 41. The protein architecture in Bacteria and Archaea identifies a set of promiscuous and ancient domains.
    Hernandez-Guerrero R; Galán-Vásquez E; Pérez-Rueda E
    PLoS One; 2019; 14(12):e0226604. PubMed ID: 31856202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Versatility and Complexity: Common and Uncommon Facets of LysR-Type Transcriptional Regulators.
    Baugh AC; Momany C; Neidle EL
    Annu Rev Microbiol; 2023 Sep; 77():317-339. PubMed ID: 37285554
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptional activation of the bkd operon of Pseudomonas putida by BkdR.
    Madhusudhan KT; Hester KL; Friend V; Sokatch JR
    J Bacteriol; 1997 Mar; 179(6):1992-7. PubMed ID: 9068646
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Validating regulatory predictions from diverse bacteria with mutant fitness data.
    Sagawa S; Price MN; Deutschbauer AM; Arkin AP
    PLoS One; 2017; 12(5):e0178258. PubMed ID: 28542589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacterial regulatory networks are extremely flexible in evolution.
    Lozada-Chávez I; Janga SC; Collado-Vides J
    Nucleic Acids Res; 2006; 34(12):3434-45. PubMed ID: 16840530
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coding limits on the number of transcription factors.
    Itzkovitz S; Tlusty T; Alon U
    BMC Genomics; 2006 Sep; 7():239. PubMed ID: 16984633
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complex synergistic amino acid-nucleotide interactions contribute to the specificity of NagC operator recognition and induction.
    Fernandez M; Plumbridge J
    Microbiology (Reading); 2019 Jul; 165(7):792-803. PubMed ID: 31107208
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family.
    Hong M; Fuangthong M; Helmann JD; Brennan RG
    Mol Cell; 2005 Oct; 20(1):131-41. PubMed ID: 16209951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GamR, the LysR-Type Galactose Metabolism Regulator, Regulates hrp Gene Expression via Transcriptional Activation of Two Key hrp Regulators, HrpG and HrpX, in Xanthomonas oryzae pv. oryzae.
    Rashid MM; Ikawa Y; Tsuge S
    Appl Environ Microbiol; 2016 Jul; 82(13):3947-3958. PubMed ID: 27107122
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular biology of the LysR family of transcriptional regulators.
    Schell MA
    Annu Rev Microbiol; 1993; 47():597-626. PubMed ID: 8257110
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.
    Ishihama A; Shimada T; Yamazaki Y
    Nucleic Acids Res; 2016 Mar; 44(5):2058-74. PubMed ID: 26843427
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in
    Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The wing of the ToxR winged helix-turn-helix domain is required for DNA binding and activation of toxT and ompU.
    Morgan SJ; French EL; Plecha SC; Krukonis ES
    PLoS One; 2019; 14(9):e0221936. PubMed ID: 31498842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modelling the evolution of transcription factor binding preferences in complex eukaryotes.
    Rosanova A; Colliva A; Osella M; Caselle M
    Sci Rep; 2017 Aug; 7(1):7596. PubMed ID: 28790414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Jin J; He K; Tang X; Li Z; Lv L; Zhao Y; Luo J; Gao G
    Mol Biol Evol; 2015 Jul; 32(7):1767-73. PubMed ID: 25750178
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MarR-Family Transcription Factor HpaR Controls Expression of the vgrR-vgrS Operon of Xanthomonas campestris pv. campestris.
    Pan Y; Liang F; Li RJ; Qian W
    Mol Plant Microbe Interact; 2018 Mar; 31(3):299-310. PubMed ID: 29077520
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface signaling in transcriptional regulation of the ferric citrate transport system of Escherichia coli: mutational analysis of the alternative sigma factor FecI supports its essential role in fec transport gene transcription.
    Ochs M; Angerer A; Enz S; Braun V
    Mol Gen Genet; 1996 Mar; 250(4):455-65. PubMed ID: 8602163
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genomic analysis of the hierarchical structure of regulatory networks.
    Yu H; Gerstein M
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14724-31. PubMed ID: 17003135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.