These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 21636955)
1. Effects of walking speed and step frequency on estimation of physical activity using accelerometers. Park J; Ishikawa-Takata K; Tanaka S; Mekata Y; Tabata I J Physiol Anthropol; 2011; 30(3):119-27. PubMed ID: 21636955 [TBL] [Abstract][Full Text] [Related]
2. Influence of speed and step frequency during walking and running on motion sensor output. Rowlands AV; Stone MR; Eston RG Med Sci Sports Exerc; 2007 Apr; 39(4):716-27. PubMed ID: 17414811 [TBL] [Abstract][Full Text] [Related]
3. Accuracy of uploadable pedometers in laboratory, overground, and free-living conditions in young and older adults. Dondzila CJ; Swartz AM; Miller NE; Lenz EK; Strath SJ Int J Behav Nutr Phys Act; 2012 Dec; 9():143. PubMed ID: 23232036 [TBL] [Abstract][Full Text] [Related]
4. Validation of MET estimates and step measurement using the ActivPAL physical activity logger. Harrington DM; Welk GJ; Donnelly AE J Sports Sci; 2011 Mar; 29(6):627-33. PubMed ID: 21360402 [TBL] [Abstract][Full Text] [Related]
5. Validation and comparison of 3 accelerometers for measuring physical activity intensity during nonlocomotive activities and locomotive movements. Hikihara Y; Tanaka S; Ohkawara K; Ishikawa-Takata K; Tabata I J Phys Act Health; 2012 Sep; 9(7):935-43. PubMed ID: 22971884 [TBL] [Abstract][Full Text] [Related]
6. Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults. Abel MG; Hannon JC; Sell K; Lillie T; Conlin G; Anderson D Appl Physiol Nutr Metab; 2008 Dec; 33(6):1155-64. PubMed ID: 19088773 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of activity monitors in controlled and free-living environments. Feito Y; Bassett DR; Thompson DL Med Sci Sports Exerc; 2012 Apr; 44(4):733-41. PubMed ID: 21904249 [TBL] [Abstract][Full Text] [Related]
8. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking. Yang S; Li Q Comput Methods Biomech Biomed Engin; 2012; 15(3):313-22. PubMed ID: 21294007 [TBL] [Abstract][Full Text] [Related]
9. Step counting and energy expenditure estimation in patients with chronic obstructive pulmonary disease and healthy elderly: accuracy of 2 motion sensors. Furlanetto KC; Bisca GW; Oldemberg N; Sant'anna TJ; Morakami FK; Camillo CA; Cavalheri V; Hernandes NA; Probst VS; Ramos EM; Brunetto AF; Pitta F Arch Phys Med Rehabil; 2010 Feb; 91(2):261-7. PubMed ID: 20159131 [TBL] [Abstract][Full Text] [Related]
10. Validation of open-source step-counting algorithms for wrist-worn tri-axial accelerometers in cardiovascular patients. Femiano R; Werner C; Wilhelm M; Eser P Gait Posture; 2022 Feb; 92():206-211. PubMed ID: 34864486 [TBL] [Abstract][Full Text] [Related]
11. Capturing step counts at slow walking speeds in older adults: comparison of ankle and waist placement of measuring device. Simpson LA; Eng JJ; Klassen TD; Lim SB; Louie DR; Parappilly B; Sakakibara BM; Zbogar D J Rehabil Med; 2015 Oct; 47(9):830-5. PubMed ID: 26181670 [TBL] [Abstract][Full Text] [Related]
12. Effects of BMI and abdominal volume on the accuracy of step count obtained from a tri-axial accelerometer. Cleland I; Nugent CD; Finlay DD; Burns W; Bougourd J; Stevens K; Armitage R Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3656-9. PubMed ID: 22255132 [TBL] [Abstract][Full Text] [Related]
13. Validation of the ADAMO Care Watch for step counting in older adults. Magistro D; Brustio PR; Ivaldi M; Esliger DW; Zecca M; Rainoldi A; Boccia G PLoS One; 2018; 13(2):e0190753. PubMed ID: 29425196 [TBL] [Abstract][Full Text] [Related]
14. Adjusting step count recommendations for anthropometric variations in leg length. Beets MW; Agiovlasitis S; Fahs CA; Ranadive SM; Fernhall B J Sci Med Sport; 2010 Sep; 13(5):509-12. PubMed ID: 20096631 [TBL] [Abstract][Full Text] [Related]
15. Validity of the Actical activity monitor for assessing steps and energy expenditure during walking. Johnson M; Meltz K; Hart K; Schmudlach M; Clarkson L; Borman K J Sports Sci; 2015; 33(8):769-76. PubMed ID: 25356920 [TBL] [Abstract][Full Text] [Related]
16. Effects of body mass index on the accuracy of an electronic pedometer. Swartz AM; Bassett DR; Moore JB; Thompson DL; Strath SJ Int J Sports Med; 2003 Nov; 24(8):588-92. PubMed ID: 14598195 [TBL] [Abstract][Full Text] [Related]
17. Does a waist-worn accelerometer capture intra- and inter-person variation in walking behavior among persons with multiple sclerosis? Motl RW; Sosnoff JJ; Dlugonski D; Suh Y; Goldman M Med Eng Phys; 2010 Dec; 32(10):1224-8. PubMed ID: 20875952 [TBL] [Abstract][Full Text] [Related]
18. Effects of body mass index on step count accuracy of physical activity monitors. Feito Y; Bassett DR; Thompson DL; Tyo BM J Phys Act Health; 2012 May; 9(4):594-600. PubMed ID: 21946229 [TBL] [Abstract][Full Text] [Related]
19. Predicting walking METs and energy expenditure from speed or accelerometry. Brooks AG; Gunn SM; Withers RT; Gore CJ; Plummer JL Med Sci Sports Exerc; 2005 Jul; 37(7):1216-23. PubMed ID: 16015141 [TBL] [Abstract][Full Text] [Related]
20. Metabolic rate and accelerometer output during walking in people with Down syndrome. Agiovlasitis S; Motl RW; Fahs CA; Ranadive SM; Yan H; Echols GH; Rossow L; Fernhall B Med Sci Sports Exerc; 2011 Jul; 43(7):1322-7. PubMed ID: 21200346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]