BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21637015)

  • 1. Human intestinal microbiota: characterization of a simplified and stable gnotobiotic rat model.
    Becker N; Kunath J; Loh G; Blaut M
    Gut Microbes; 2011; 2(1):25-33. PubMed ID: 21637015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of lactate-utilizing butyrate-producing bacteria from human feces and in vivo administration of Anaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model.
    Sato T; Matsumoto K; Okumura T; Yokoi W; Naito E; Yoshida Y; Nomoto K; Ito M; Sawada H
    FEMS Microbiol Ecol; 2008 Dec; 66(3):528-36. PubMed ID: 18554304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora.
    Kleessen B; Hartmann L; Blaut M
    Br J Nutr; 2001 Aug; 86(2):291-300. PubMed ID: 11502244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models.
    Woting A; Pfeiffer N; Loh G; Klaus S; Blaut M
    mBio; 2014 Sep; 5(5):e01530-14. PubMed ID: 25271283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Intestinal Microbiota in Metabolic Disease.
    Woting A; Blaut M
    Nutrients; 2016 Apr; 8(4):202. PubMed ID: 27058556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of germ-free mice with a simplified human intestinal microbiota results in a shortened intestine.
    Slezak K; Krupova Z; Rabot S; Loh G; Levenez F; Descamps A; Lepage P; Doré J; Bellier S; Blaut M
    Gut Microbes; 2014; 5(2):176-82. PubMed ID: 24637599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota.
    Chen D; Jin D; Huang S; Wu J; Xu M; Liu T; Dong W; Liu X; Wang S; Zhong W; Liu Y; Jiang R; Piao M; Wang B; Cao H
    Cancer Lett; 2020 Jan; 469():456-467. PubMed ID: 31734354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Following the community development of SIHUMIx - a new intestinal
    Krause JL; Schaepe SS; Fritz-Wallace K; Engelmann B; Rolle-Kampczyk U; Kleinsteuber S; Schattenberg F; Liu Z; Mueller S; Jehmlich N; Von Bergen M; Herberth G
    Gut Microbes; 2020 Jul; 11(4):1116-1129. PubMed ID: 31918607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures.
    Salazar N; Ruas-Madiedo P; Kolida S; Collins M; Rastall R; Gibson G; de Los Reyes-Gavilán CG
    Int J Food Microbiol; 2009 Nov; 135(3):260-7. PubMed ID: 19735956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mesocosm of Lactobacillus johnsonii, Bifidobacterium longum, and Escherichia coli in the mouse gut.
    Denou E; Rezzonico E; Panoff JM; Arigoni F; Brüssow H
    DNA Cell Biol; 2009 Aug; 28(8):413-22. PubMed ID: 19534605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora.
    Djouzi Z; Andrieux C
    Br J Nutr; 1997 Aug; 78(2):313-24. PubMed ID: 9301420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the gut microbiota and the influence of diet.
    Rothe M; Blaut M
    Benef Microbes; 2013 Mar; 4(1):31-7. PubMed ID: 23257016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production.
    Yang J; Martínez I; Walter J; Keshavarzian A; Rose DJ
    Anaerobe; 2013 Oct; 23():74-81. PubMed ID: 23831725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrelationships between dairy product intake, microflora metabolism, faecal properties and plasmid dissemination in gnotobiotic mice.
    Maisonneuve S; Ouriet MF; Duval-Iflah Y
    Br J Nutr; 2002 Feb; 87(2):121-9. PubMed ID: 11895164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement and fixation of intestinal microbiota after administration of human feces to germfree mice.
    Kibe R; Sakamoto M; Yokota H; Ishikawa H; Aiba Y; Koga Y; Benno Y
    Appl Environ Microbiol; 2005 Jun; 71(6):3171-8. PubMed ID: 15933018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial population dynamics and faecal short-chain fatty acid (SCFA) concentrations in healthy humans.
    McOrist AL; Abell GC; Cooke C; Nyland K
    Br J Nutr; 2008 Jul; 100(1):138-46. PubMed ID: 18205991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiota and SCFA in lean and overweight healthy subjects.
    Schwiertz A; Taras D; Schäfer K; Beijer S; Bos NA; Donus C; Hardt PD
    Obesity (Silver Spring); 2010 Jan; 18(1):190-5. PubMed ID: 19498350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects.
    Benus RF; van der Werf TS; Welling GW; Judd PA; Taylor MA; Harmsen HJ; Whelan K
    Br J Nutr; 2010 Sep; 104(5):693-700. PubMed ID: 20346190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of non-fermented and fermented soybean milk intake on faecal microbiota and faecal metabolites in humans.
    Inoguchi S; Ohashi Y; Narai-Kanayama A; Aso K; Nakagaki T; Fujisawa T
    Int J Food Sci Nutr; 2012 Jun; 63(4):402-10. PubMed ID: 22040525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the intestinal microbiota of oligosaccharide fed mice exhibiting reduced resistance to Salmonella infection.
    Petersen A; Bergström A; Andersen JB; Hansen M; Lahtinen SJ; Wilcks A; Licht TR
    Benef Microbes; 2010 Sep; 1(3):271-81. PubMed ID: 21831764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.