These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 21637015)

  • 21. Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats.
    Dostal A; Lacroix C; Pham VT; Zimmermann MB; Del'homme C; Bernalier-Donadille A; Chassard C
    Br J Nutr; 2014 Jun; 111(12):2135-45. PubMed ID: 24555487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzyme deactivation treatments did not decrease the beneficial role of oat food in intestinal microbiota and short-chain fatty acids: an in vivo study.
    Hu X; Xing X; Zhen H
    J Sci Food Agric; 2013 Feb; 93(3):504-8. PubMed ID: 22836833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations.
    Brinkworth GD; Noakes M; Clifton PM; Bird AR
    Br J Nutr; 2009 May; 101(10):1493-502. PubMed ID: 19224658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lignan transformation by gut bacteria lowers tumor burden in a gnotobiotic rat model of breast cancer.
    Mabrok HB; Klopfleisch R; Ghanem KZ; Clavel T; Blaut M; Loh G
    Carcinogenesis; 2012 Jan; 33(1):203-8. PubMed ID: 22080573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gnotobiotic rats harboring human intestinal microbiota as a model for studying cholesterol-to-coprostanol conversion.
    Gérard P; Béguet F; Lepercq P; Rigottier-Gois L; Rochet V; Andrieux C; Juste C
    FEMS Microbiol Ecol; 2004 Mar; 47(3):337-43. PubMed ID: 19712322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feed supplementation of Lactobacillus plantarum PCA 236 modulates gut microbiota and milk fatty acid composition in dairy goats--a preliminary study.
    Maragkoudakis PA; Mountzouris KC; Rosu C; Zoumpopoulou G; Papadimitriou K; Dalaka E; Hadjipetrou A; Theofanous G; Strozzi GP; Carlini N; Zervas G; Tsakalidou E
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S109-16. PubMed ID: 20356645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Initial butyrate producers during infant gut microbiota development are endospore formers.
    Appert O; Garcia AR; Frei R; Roduit C; Constancias F; Neuzil-Bunesova V; Ferstl R; Zhang J; Akdis C; Lauener R; Lacroix C; Schwab C
    Environ Microbiol; 2020 Sep; 22(9):3909-3921. PubMed ID: 32686173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears.
    Schwab C; Cristescu B; Boyce MS; Stenhouse GB; Gänzle M
    Can J Microbiol; 2009 Dec; 55(12):1335-46. PubMed ID: 20029525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Comparison of concentration of volatile fatty acid and microbiota in faeces between healthy and diarrhoeal piglets].
    Su Y; Xie F; Zhu W
    Wei Sheng Wu Xue Bao; 2011 Dec; 51(12):1632-8. PubMed ID: 22379804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eleutherine americana as a growth promotor for infant intestinal microbiota.
    Phoem AN; Voravuthikunchai SP
    Anaerobe; 2013 Apr; 20():14-9. PubMed ID: 23376042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation.
    Kim MS; Hwang SS; Park EJ; Bae JW
    Environ Microbiol Rep; 2013 Oct; 5(5):765-75. PubMed ID: 24115628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches.
    Chassard C; Scott KP; Marquet P; Martin JC; Del'homme C; Dapoigny M; Flint HJ; Bernalier-Donadille A
    FEMS Microbiol Ecol; 2008 Dec; 66(3):496-504. PubMed ID: 18811647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats.
    Kleessen B; Hartmann L; Blaut M
    Br J Nutr; 2003 May; 89(5):597-606. PubMed ID: 12720580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of total enteral nutrition supplemented with a multi-fibre mix on faecal short-chain fatty acids and microbiota.
    Schneider SM; Girard-Pipau F; Anty R; van der Linde EG; Philipsen-Geerling BJ; Knol J; Filippi J; Arab K; Hébuterne X
    Clin Nutr; 2006 Feb; 25(1):82-90. PubMed ID: 16253403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short-chain fatty acids produced in vitro from fibre residues obtained from mixed diets containing different breads and in human faeces during the ingestion of the diets.
    Wisker E; Daniel M; Rave G; Feldheim W
    Br J Nutr; 2000 Jul; 84(1):31-7. PubMed ID: 10961158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study.
    Costabile A; Klinder A; Fava F; Napolitano A; Fogliano V; Leonard C; Gibson GR; Tuohy KM
    Br J Nutr; 2008 Jan; 99(1):110-20. PubMed ID: 17761020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lotus Seed Resistant Starch Regulates Gut Microbiota and Increases Short-Chain Fatty Acids Production and Mineral Absorption in Mice.
    Zeng H; Huang C; Lin S; Zheng M; Chen C; Zheng B; Zhang Y
    J Agric Food Chem; 2017 Oct; 65(42):9217-9225. PubMed ID: 28954513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Faecal short chain fatty acids in healthy subjects participating in a randomised controlled trial examining a soluble highly viscous polysaccharide versus control.
    Reimer RA; Pelletier X; Carabin IG; Lyon MR; Gahler RJ; Wood S
    J Hum Nutr Diet; 2012 Aug; 25(4):373-7. PubMed ID: 22320902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of Clostridium butyricum MIYAIRI 588 on the murine gut microbiome and colonic tissue.
    Hagihara M; Yamashita R; Matsumoto A; Mori T; Kuroki Y; Kudo H; Oka K; Takahashi M; Nonogaki T; Yamagishi Y; Mikamo H
    Anaerobe; 2018 Dec; 54():8-18. PubMed ID: 30076897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased bacterial putrescine has no impact on gut morphology and physiology in gnotobiotic adolescent mice.
    Slezak K; Hanske L; Loh G; Blaut M
    Benef Microbes; 2013 Sep; 4(3):253-66. PubMed ID: 23666100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.