These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21637233)

  • 21. Some effects of arsenic on the rumen microflora; an in vitro study.
    Forsberg CW
    Can J Microbiol; 1978 Jan; 24(1):36-44. PubMed ID: 754875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review.
    Kumari N; Jagadevan S
    Chemosphere; 2016 Nov; 163():400-412. PubMed ID: 27565307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissimilatory Arsenate Reduction and In Situ Microbial Activities and Diversity in Arsenic-rich Groundwater of Chianan Plain, Southwestern Taiwan.
    Das S; Liu CC; Jean JS; Liu T
    Microb Ecol; 2016 Feb; 71(2):365-74. PubMed ID: 26219267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria.
    Simeonova DD; Lièvremont D; Lagarde F; Muller DA; Groudeva VI; Lett MC
    FEMS Microbiol Lett; 2004 Aug; 237(2):249-53. PubMed ID: 15321669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmid-determined resistance to arsenic and antimony in Pseudomonas aeruginosa.
    Cervantes C; Chávez J
    Antonie Van Leeuwenhoek; 1992 May; 61(4):333-7. PubMed ID: 1497337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative study of As (V) and As (III) interaction with mangrove DNA by molecular fluorescence spectroscopy.
    Majumder N; Chowdhury C; Ray R; Jana TK
    Bull Environ Contam Toxicol; 2014 Aug; 93(2):177-81. PubMed ID: 24711051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production.
    Román-Ponce B; Ramos-Garza J; Arroyo-Herrera I; Maldonado-Hernández J; Bahena-Osorio Y; Vásquez-Murrieta MS; Wang ET
    Arch Microbiol; 2018 Aug; 200(6):883-895. PubMed ID: 29476206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere.
    Jia Y; Huang H; Chen Z; Zhu YG
    Environ Sci Technol; 2014 Jan; 48(2):1001-7. PubMed ID: 24383760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biotransformation of the pesticide sodium arsenate.
    Shariatpanahi M; Anderson AC; Abdelghani AA; Englande AJ; Hughes J; Wilkinson RF
    J Environ Sci Health B; 1981; 16(1):35-47. PubMed ID: 7009715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GFAJ-1 is an arsenate-resistant, phosphate-dependent organism.
    Erb TJ; Kiefer P; Hattendorf B; Günther D; Vorholt JA
    Science; 2012 Jul; 337(6093):467-70. PubMed ID: 22773139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. "Artifactual" arsenate DNA.
    Nielsen PE
    Artif DNA PNA XNA; 2012; 3(1):1-2. PubMed ID: 22679526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China.
    Cai X; Zhang Z; Yin N; Du H; Li Z; Cui Y
    Chemosphere; 2016 Oct; 161():200-207. PubMed ID: 27427777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample.
    Vaxevanidou K; Christou C; Kremmydas GF; Georgakopoulos DG; Papassiopi N
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):282-8. PubMed ID: 25588567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can arsenates replace phosphates in natural biochemical processes? A computational study.
    Jissy AK; Datta A
    J Phys Chem B; 2013 Jul; 117(28):8340-6. PubMed ID: 23789648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indispensable or toxic? The phosphate versus arsenate debate.
    Huertas MJ; Michán C
    Microb Biotechnol; 2013 May; 6(3):209-11. PubMed ID: 23280010
    [No Abstract]   [Full Text] [Related]  

  • 37. arrA is a reliable marker for As(V) respiration.
    Malasarn D; Saltikov CW; Campbell KM; Santini JM; Hering JG; Newman DK
    Science; 2004 Oct; 306(5695):455. PubMed ID: 15486292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphate transport in arsenate-resistant mutants of Micrococcus lysodeikticus.
    Alfasi H; Friedberg D; Froedberg I
    J Bacteriol; 1979 Jan; 137(1):69-72. PubMed ID: 762027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial reduction of arsenate in sea water.
    Johnson DL
    Nature; 1972 Nov; 240(5375):44-5. PubMed ID: 4570637
    [No Abstract]   [Full Text] [Related]  

  • 40. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.
    Bahar MM; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2663-8. PubMed ID: 26438364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.