These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 2163758)
1. Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Berger SL; Cress WD; Cress A; Triezenberg SJ; Guarente L Cell; 1990 Jun; 61(7):1199-208. PubMed ID: 2163758 [TBL] [Abstract][Full Text] [Related]
2. Promoter structure and transcriptional activation with chromatin templates assembled in vitro. A single Gal4-VP16 dimer binds to chromatin or to DNA with comparable affinity. Pazin MJ; Hermann JW; Kadonaga JT J Biol Chem; 1998 Dec; 273(51):34653-60. PubMed ID: 9852139 [TBL] [Abstract][Full Text] [Related]
3. The acidic transcriptional activation domains of herpes virus VP16 and yeast HAP4 have different co-factor requirements. Wang L; Turcotte B; Guarente L; Berger SL Gene; 1995 Jun; 158(2):163-70. PubMed ID: 7607537 [TBL] [Abstract][Full Text] [Related]
4. Activation of yeast polymerase II transcription by herpesvirus VP16 and GAL4 derivatives in vitro. Chasman DI; Leatherwood J; Carey M; Ptashne M; Kornberg RD Mol Cell Biol; 1989 Nov; 9(11):4746-9. PubMed ID: 2557540 [TBL] [Abstract][Full Text] [Related]
5. Modulating the potency of an activator in a yeast in vitro transcription system. Ohashi Y; Brickman JM; Furman E; Middleton B; Carey M Mol Cell Biol; 1994 Apr; 14(4):2731-9. PubMed ID: 8139572 [TBL] [Abstract][Full Text] [Related]
6. Mutations in the AF-2/hormone-binding domain of the chimeric activator GAL4.estrogen receptor.VP16 inhibit hormone-dependent transcriptional activation and chromatin remodeling in yeast. Stafford GA; Morse RH J Biol Chem; 1998 Dec; 273(51):34240-6. PubMed ID: 9852087 [TBL] [Abstract][Full Text] [Related]
7. Biochemical mechanism of transcriptional activation by GAL4-VP16. Tantin D; Chi T; Hori R; Pyo S; Carey M Methods Enzymol; 1996; 274():133-49. PubMed ID: 8902801 [No Abstract] [Full Text] [Related]
8. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Berger SL; PiƱa B; Silverman N; Marcus GA; Agapite J; Regier JL; Triezenberg SJ; Guarente L Cell; 1992 Jul; 70(2):251-65. PubMed ID: 1638630 [TBL] [Abstract][Full Text] [Related]
9. GAL4 derivatives function alone and synergistically with mammalian activators in vitro. Lin YS; Carey MF; Ptashne M; Green MR Cell; 1988 Aug; 54(5):659-64. PubMed ID: 3044607 [TBL] [Abstract][Full Text] [Related]
10. Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro. Huh JR; Park JM; Kim M; Carlson BA; Hatfield DL; Lee BJ Biochem Biophys Res Commun; 1999 Mar; 256(1):45-51. PubMed ID: 10066420 [TBL] [Abstract][Full Text] [Related]
11. A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Kelleher RJ; Flanagan PM; Kornberg RD Cell; 1990 Jun; 61(7):1209-15. PubMed ID: 2163759 [TBL] [Abstract][Full Text] [Related]
12. Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Xiao H; Friesen JD; Lis JT Mol Cell Biol; 1995 Oct; 15(10):5757-61. PubMed ID: 7565728 [TBL] [Abstract][Full Text] [Related]
13. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. Yagi R; Chen LF; Shigesada K; Murakami Y; Ito Y EMBO J; 1999 May; 18(9):2551-62. PubMed ID: 10228168 [TBL] [Abstract][Full Text] [Related]
14. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Larschan E; Winston F Genes Dev; 2001 Aug; 15(15):1946-56. PubMed ID: 11485989 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional activation by DNA-binding derivatives of HSV-1 VP16 that lack the carboxyl-terminal acidic activation domain. Popova B; Bilan P; Xiao P; Faught M; Capone JP Virology; 1995 May; 209(1):19-28. PubMed ID: 7747469 [TBL] [Abstract][Full Text] [Related]
16. DNA constraints on transcription activation in vitro. Ross ED; Keating AM; Maher LJ 3RD J Mol Biol; 2000 Mar; 297(2):321-34. PubMed ID: 10715204 [TBL] [Abstract][Full Text] [Related]
17. Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators. Hori R; Pyo S; Carey M Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6047-51. PubMed ID: 7597078 [TBL] [Abstract][Full Text] [Related]
18. Directing transcription of an RNA polymerase III gene via GAL4 sites. Marsolier MC; Chaussivert N; Lefebvre O; Conesa C; Werner M; Sentenac A Proc Natl Acad Sci U S A; 1994 Dec; 91(25):11938-42. PubMed ID: 7991561 [TBL] [Abstract][Full Text] [Related]
19. Initiation on chromatin templates in a yeast RNA polymerase II transcription system. Lorch Y; LaPointe JW; Kornberg RD Genes Dev; 1992 Dec; 6(12A):2282-7. PubMed ID: 1459452 [TBL] [Abstract][Full Text] [Related]
20. GCN5 dependence of chromatin remodeling and transcriptional activation by the GAL4 and VP16 activation domains in budding yeast. Stafford GA; Morse RH Mol Cell Biol; 2001 Jul; 21(14):4568-78. PubMed ID: 11416135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]