BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 21637801)

  • 1. A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle.
    Mönnich M; Kuriger Z; Print CG; Horsfield JA
    PLoS One; 2011; 6(5):e20051. PubMed ID: 21637801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome.
    Percival SM; Thomas HR; Amsterdam A; Carroll AJ; Lees JA; Yost HJ; Parant JM
    Dis Model Mech; 2015 Aug; 8(8):941-55. PubMed ID: 26044958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Esco2 regulates cx43 expression during skeletal regeneration in the zebrafish fin.
    Banerji R; Eble DM; Iovine MK; Skibbens RV
    Dev Dyn; 2016 Jan; 245(1):7-21. PubMed ID: 26434741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The non-redundant function of cohesin acetyltransferase Esco2: some answers and new questions.
    Whelan G; Kreidl E; Peters JM; Eichele G
    Nucleus; 2012 Jul; 3(4):330-4. PubMed ID: 22614755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome.
    Xu B; Lee KK; Zhang L; Gerton JL
    PLoS Genet; 2013; 9(10):e1003857. PubMed ID: 24098154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cohesin mediates Esco2-dependent transcriptional regulation in a zebrafish regenerating fin model of Roberts Syndrome.
    Banerji R; Skibbens RV; Iovine MK
    Biol Open; 2017 Dec; 6(12):1802-1813. PubMed ID: 29084713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-redundant roles in sister chromatid cohesion of the DNA helicase DDX11 and the SMC3 acetyl transferases ESCO1 and ESCO2.
    Faramarz A; Balk JA; van Schie JJM; Oostra AB; Ghandour CA; Rooimans MA; Wolthuis RMF; de Lange J
    PLoS One; 2020; 15(1):e0220348. PubMed ID: 31935221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The expanding phenotypes of cohesinopathies: one ring to rule them all!
    Piché J; Van Vliet PP; Pucéat M; Andelfinger G
    Cell Cycle; 2019 Nov; 18(21):2828-2848. PubMed ID: 31516082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Esco2 and cohesin regulate CRL4 ubiquitin ligase
    Sanchez AC; Thren ED; Iovine MK; Skibbens RV
    Cell Cycle; 2022 Mar; 21(5):501-513. PubMed ID: 34989322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How many roads lead to cohesinopathies?
    Banerji R; Skibbens RV; Iovine MK
    Dev Dyn; 2017 Nov; 246(11):881-888. PubMed ID: 28422453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CyclinD1 Down-Regulation and Increased Apoptosis Are Common Features of Cohesinopathies.
    Fazio G; Gaston-Massuet C; Bettini LR; Graziola F; Scagliotti V; Cereda A; Ferrari L; Mazzola M; Cazzaniga G; Giordano A; Cotelli F; Bellipanni G; Biondi A; Selicorni A; Pistocchi A; Massa V
    J Cell Physiol; 2016 Mar; 231(3):613-22. PubMed ID: 26206533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifactorial origins of heart and gut defects in nipbl-deficient zebrafish, a model of Cornelia de Lange Syndrome.
    Muto A; Calof AL; Lander AD; Schilling TF
    PLoS Biol; 2011 Oct; 9(10):e1001181. PubMed ID: 22039349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cohesinopathies of a feather flock together.
    Skibbens RV; Colquhoun JM; Green MJ; Molnar CA; Sin DN; Sullivan BJ; Tanzosh EE
    PLoS Genet; 2013; 9(12):e1004036. PubMed ID: 24367282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RAD21 mutations cause a human cohesinopathy.
    Deardorff MA; Wilde JJ; Albrecht M; Dickinson E; Tennstedt S; Braunholz D; Mönnich M; Yan Y; Xu W; Gil-Rodríguez MC; Clark D; Hakonarson H; Halbach S; Michelis LD; Rampuria A; Rossier E; Spranger S; Van Maldergem L; Lynch SA; Gillessen-Kaesbach G; Lüdecke HJ; Ramsay RG; McKay MJ; Krantz ID; Xu H; Horsfield JA; Kaiser FJ
    Am J Hum Genet; 2012 Jun; 90(6):1014-27. PubMed ID: 22633399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ever-changing landscape in Roberts syndrome biology: Implications for macromolecular damage.
    Mfarej MG; Skibbens RV
    PLoS Genet; 2020 Dec; 16(12):e1009219. PubMed ID: 33382686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin.
    Whelan G; Kreidl E; Wutz G; Egner A; Peters JM; Eichele G
    EMBO J; 2012 Jan; 31(1):71-82. PubMed ID: 22101327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roberts syndrome in an Indian patient with humeroradial synostosis, congenital elbow contractures and a novel homozygous splice variant in ESCO2.
    Schneeberger PE; Nayak SS; Fuchs S; Kutsche K; Girisha KM
    Am J Med Genet A; 2020 Nov; 182(11):2793-2796. PubMed ID: 32783269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically induced redox stress occurs in a yeast model for Roberts syndrome.
    Mfarej MG; Skibbens RV
    G3 (Bethesda); 2022 Feb; 12(2):. PubMed ID: 34897432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome.
    Xu B; Sowa N; Cardenas ME; Gerton JL
    Hum Mol Genet; 2015 Mar; 24(6):1540-55. PubMed ID: 25378554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cohesin-dependent regulation of Runx genes.
    Horsfield JA; Anagnostou SH; Hu JK; Cho KH; Geisler R; Lieschke G; Crosier KE; Crosier PS
    Development; 2007 Jul; 134(14):2639-49. PubMed ID: 17567667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.