These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A Roberts Syndrome Individual With Differential Genotoxin Sensitivity and a DNA Damage Response Defect. McKay MJ; Craig J; Kalitsis P; Kozlov S; Verschoor S; Chen P; Lobachevsky P; Vasireddy R; Yan Y; Ryan J; McGillivray G; Savarirayan R; Lavin MF; Ramsay RG; Xu H Int J Radiat Oncol Biol Phys; 2019 Apr; 103(5):1194-1202. PubMed ID: 30508616 [TBL] [Abstract][Full Text] [Related]
23. Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome. Xu B; Gogol M; Gaudenz K; Gerton JL BMC Genomics; 2016 Jan; 17():25. PubMed ID: 26729373 [TBL] [Abstract][Full Text] [Related]
24. The cellular phenotype of Roberts syndrome fibroblasts as revealed by ectopic expression of ESCO2. van der Lelij P; Godthelp BC; van Zon W; van Gosliga D; Oostra AB; Steltenpool J; de Groot J; Scheper RJ; Wolthuis RM; Waisfisz Q; Darroudi F; Joenje H; de Winter JP PLoS One; 2009 Sep; 4(9):e6936. PubMed ID: 19738907 [TBL] [Abstract][Full Text] [Related]
25. The effect of Nipped-B-like (Nipbl) haploinsufficiency on genome-wide cohesin binding and target gene expression: modeling Cornelia de Lange syndrome. Newkirk DA; Chen YY; Chien R; Zeng W; Biesinger J; Flowers E; Kawauchi S; Santos R; Calof AL; Lander AD; Xie X; Yokomori K Clin Epigenetics; 2017; 9():89. PubMed ID: 28855971 [TBL] [Abstract][Full Text] [Related]
26. Esco2 promotes neuronal differentiation by repressing Notch signaling. Leem YE; Choi HK; Jung SY; Kim BJ; Lee KY; Yoon K; Qin J; Kang JS; Kim ST Cell Signal; 2011 Nov; 23(11):1876-84. PubMed ID: 21777673 [TBL] [Abstract][Full Text] [Related]
27. Cohesin composition and dosage independently affect early development in zebrafish. Labudina AA; Meier M; Gimenez G; Tatarakis D; Ketharnathan S; Mackie B; Schilling TF; Antony J; Horsfield JA Development; 2024 Aug; 151(15):. PubMed ID: 38975838 [TBL] [Abstract][Full Text] [Related]
28. The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Gordillo M; Vega H; Trainer AH; Hou F; Sakai N; Luque R; Kayserili H; Basaran S; Skovby F; Hennekam RC; Uzielli ML; Schnur RE; Manouvrier S; Chang S; Blair E; Hurst JA; Forzano F; Meins M; Simola KO; Raas-Rothschild A; Schultz RA; McDaniel LD; Ozono K; Inui K; Zou H; Jabs EW Hum Mol Genet; 2008 Jul; 17(14):2172-80. PubMed ID: 18411254 [TBL] [Abstract][Full Text] [Related]
29. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Deardorff MA; Bando M; Nakato R; Watrin E; Itoh T; Minamino M; Saitoh K; Komata M; Katou Y; Clark D; Cole KE; De Baere E; Decroos C; Di Donato N; Ernst S; Francey LJ; Gyftodimou Y; Hirashima K; Hullings M; Ishikawa Y; Jaulin C; Kaur M; Kiyono T; Lombardi PM; Magnaghi-Jaulin L; Mortier GR; Nozaki N; Petersen MB; Seimiya H; Siu VM; Suzuki Y; Takagaki K; Wilde JJ; Willems PJ; Prigent C; Gillessen-Kaesbach G; Christianson DW; Kaiser FJ; Jackson LG; Hirota T; Krantz ID; Shirahige K Nature; 2012 Sep; 489(7415):313-7. PubMed ID: 22885700 [TBL] [Abstract][Full Text] [Related]
30. Esco1 and Esco2 regulate distinct cohesin functions during cell cycle progression. Alomer RM; da Silva EML; Chen J; Piekarz KM; McDonald K; Sansam CG; Sansam CL; Rankin S Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9906-9911. PubMed ID: 28847955 [TBL] [Abstract][Full Text] [Related]
31. Diverse developmental disorders from the one ring: distinct molecular pathways underlie the cohesinopathies. Horsfield JA; Print CG; Mönnich M Front Genet; 2012; 3():171. PubMed ID: 22988450 [TBL] [Abstract][Full Text] [Related]
32. Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved. Rhodes JM; Bentley FK; Print CG; Dorsett D; Misulovin Z; Dickinson EJ; Crosier KE; Crosier PS; Horsfield JA Dev Biol; 2010 Aug; 344(2):637-49. PubMed ID: 20553708 [TBL] [Abstract][Full Text] [Related]
33. Esco1 Acetylates Cohesin via a Mechanism Different from That of Esco2. Minamino M; Ishibashi M; Nakato R; Akiyama K; Tanaka H; Kato Y; Negishi L; Hirota T; Sutani T; Bando M; Shirahige K Curr Biol; 2015 Jun; 25(13):1694-706. PubMed ID: 26051894 [TBL] [Abstract][Full Text] [Related]
34. Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Dorsett D Chromosoma; 2007 Feb; 116(1):1-13. PubMed ID: 16819604 [TBL] [Abstract][Full Text] [Related]
35. Cornelia de Lange syndrome: further delineation of phenotype, cohesin biology and educational focus, 5th Biennial Scientific and Educational Symposium abstracts. Kline AD; Calof AL; Schaaf CA; Krantz ID; Jyonouchi S; Yokomori K; Gauze M; Carrico CS; Woodman J; Gerton JL; Vega H; Levin AV; Shirahige K; Champion M; Goodban MT; O'Connor JT; Pipan M; Horsfield J; Deardorff MA; Ishman SL; Dorsett D Am J Med Genet A; 2014 Jun; 164A(6):1384-93. PubMed ID: 24504889 [TBL] [Abstract][Full Text] [Related]
36. Chromatin determinants of the inner-centromere rely on replication factors with functions that impart cohesion. Abe T; Kawasumi R; Arakawa H; Hori T; Shirahige K; Losada A; Fukagawa T; Branzei D Oncotarget; 2016 Oct; 7(42):67934-67947. PubMed ID: 27636994 [TBL] [Abstract][Full Text] [Related]
37. Translational mechanisms at work in the cohesinopathies. Gerton JL Nucleus; 2012; 3(6):520-5. PubMed ID: 23138777 [TBL] [Abstract][Full Text] [Related]
38. Temporal Regulation of ESCO2 Degradation by the MCM Complex, the CUL4-DDB1-VPRBP Complex, and the Anaphase-Promoting Complex. Minamino M; Tei S; Negishi L; Kanemaki MT; Yoshimura A; Sutani T; Bando M; Shirahige K Curr Biol; 2018 Aug; 28(16):2665-2672.e5. PubMed ID: 30100344 [TBL] [Abstract][Full Text] [Related]
40. Zebrafish as a Model to Study Cohesin and Cohesinopathies. Muto A; Schilling TF Methods Mol Biol; 2017; 1515():177-196. PubMed ID: 27797080 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]