BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21638188)

  • 1. Laparoscopic implantation of neural electrodes on pelvic nerves: an experimental study on the obturator nerve in a chronic minipig model.
    Rabischong B; Larraín D; Rabischong P; Botchorishvili R; Fraisse G; Gallego S; Gaydier P; Chardigny JM; Avan P
    Surg Endosc; 2011 Nov; 25(11):3706-12. PubMed ID: 21638188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic nerve health following implantation of femoral nerve cuff electrodes.
    Freeberg MJ; Pinault GCJ; Tyler DJ; Triolo RJ; Ansari R
    J Neuroeng Rehabil; 2020 Jul; 17(1):95. PubMed ID: 32664972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splenic Nerve Neuromodulation Reduces Inflammation and Promotes Resolution in Chronically Implanted Pigs.
    Sokal DM; McSloy A; Donegà M; Kirk J; Colas RA; Dolezalova N; Gomez EA; Gupta I; Fjordbakk CT; Ouchouche S; Matteucci PB; Schlegel K; Bashirullah R; Werling D; Harman K; Rowles A; Yazicioglu RF; Dalli J; Chew DJ; Perkins JD
    Front Immunol; 2021; 12():649786. PubMed ID: 33859641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic implantation of cuff electrodes on the pelvic nerve in rats is well tolerated and does not compromise afferent or efferent fibre functionality.
    Crook JJ; Brouillard CBJ; Irazoqui PP; Lovick TA
    J Neural Eng; 2018 Jan; 15(2):024001. PubMed ID: 29303111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-Loop Control of Functional Electrical Stimulation Using a Selectively Recording and Bidirectional Nerve Cuff Interface.
    Hwang YE; Long L; Filho JS; Genov R; Zariffa J
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():504-513. PubMed ID: 38231810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Update on Peripheral Nerve Electrodes for Closed-Loop Neuroprosthetics.
    Rijnbeek EH; Eleveld N; Olthuis W
    Front Neurosci; 2018; 12():350. PubMed ID: 29910705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Nerve Cuff Stimulation Strategies for Prolonging Muscle Output.
    Gelenitis KT; Sanner BM; Triolo RJ; Tyler DJ
    IEEE Trans Biomed Eng; 2020 May; 67(5):1397-1408. PubMed ID: 31449001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of Small Nerve Trunks and Branches Using Adaptive Flexible Electrodes.
    Xiang Z; Sheshadri S; Lee SH; Wang J; Xue N; Thakor NV; Yen SC; Lee C
    Adv Sci (Weinh); 2016 Sep; 3(9):1500386. PubMed ID: 27981020
    [No Abstract]   [Full Text] [Related]  

  • 9. Time series classification of multi-channel nerve cuff recordings using deep learning.
    Gill APS; Zariffa J
    PLoS One; 2024; 19(3):e0299271. PubMed ID: 38470880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A soft, scalable and adaptable multi-contact cuff electrode for targeted peripheral nerve modulation.
    Paggi V; Fallegger F; Serex L; Rizzo O; Galan K; Giannotti A; Furfaro I; Zinno C; Bernini F; Micera S; Lacour SP
    Bioelectron Med; 2024 Feb; 10(1):6. PubMed ID: 38350988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. System of Implantable Electrodes for Neural Signal Acquisition and Stimulation for Wirelessly Connected Forearm Prosthesis.
    Ionescu ON; Franti E; Carbunaru V; Moldovan C; Dinulescu S; Ion M; Dragomir DC; Mihailescu CM; Lascar I; Oproiu AM; Neagu TP; Costea R; Dascalu M; Teleanu MD; Ionescu G; Teleanu R
    Biosensors (Basel); 2024 Jan; 14(1):. PubMed ID: 38248408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental articular cartilage repair in the Göttingen minipig: the influence of multiple defects per knee.
    Christensen BB; Foldager CB; Olesen ML; Vingtoft L; Rölfing JH; Ringgaard S; Lind M
    J Exp Orthop; 2015 Dec; 2(1):13. PubMed ID: 26914881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependent embryonic development of Trichuris suis eggs in a medicinal raw material.
    Vejzagić N; Kringel H; Bruun JM; Roepstorff A; Thamsborg SM; Grossi AB; Kapel CM
    Vet Parasitol; 2016 Jan; 215():48-57. PubMed ID: 26790737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis.
    Lorenzen E; Follmann F; Bøje S; Erneholm K; Olsen AW; Agerholm JS; Jungersen G; Andersen P
    Front Immunol; 2015; 6():628. PubMed ID: 26734002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a minipig model for lung injury induced by a single high-dose radiation exposure and evaluation with thoracic computed tomography.
    Lee JG; Park S; Bae CH; Jang WS; Lee SJ; Lee DN; Myung JK; Kim CH; Jin YW; Lee SS; Shim S
    J Radiat Res; 2016 Jun; 57(3):201-9. PubMed ID: 26712795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organ data from the developing Göttingen minipig: first steps towards a juvenile PBPK model.
    Van Peer E; Downes N; Casteleyn C; Van Ginneken C; Weeren A; Van Cruchten S
    J Pharmacokinet Pharmacodyn; 2016 Apr; 43(2):179-90. PubMed ID: 26687458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced Clinical Imaging and Tissue-based Biomarkers of the Eye for Toxicology Studies in Minipigs.
    Atzpodien EA; Jacobsen B; Funk J; Altmann B; Silva Munoz MA; Singer T; Gyger C; Hasler P; Maloca P
    Toxicol Pathol; 2016 Apr; 44(3):398-413. PubMed ID: 26680760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vehicle Systems and Excipients Used in Minipig Drug Development Studies.
    Weaver ML; Grossi AB; Schützsack J; Parish J; Løgsted J; Bøgh IB; Cameron D; Harvey W; Festag M; Downes N; Venturella S; Schlichtiger J; Mhedhbi S; Ross V; Kissner T; Stark C; Milano S; Heining P; Sanchez-Felix M
    Toxicol Pathol; 2016 Apr; 44(3):367-72. PubMed ID: 26674803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniature Swine Breeds in Toxicology and Drug Safety Assessments: What to Expect during Clinical and Pathology Evaluations.
    Stricker-Krongrad A; Shoemake CR; Pereira ME; Gad SC; Brocksmith D; Bouchard GF
    Toxicol Pathol; 2016 Apr; 44(3):421-7. PubMed ID: 26656239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Fish Scale-Derived BioCornea to Seal Full-Thickness Corneal Perforations in Pig Models.
    Chen SC; Telinius N; Lin HT; Huang MC; Lin CC; Chou CH; Hjortdal J
    PLoS One; 2015; 10(11):e0143511. PubMed ID: 26599018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.