These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21638289)

  • 1. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?
    Newbury DE; Ritchie NW
    Scanning; 2011; 33(3):174-92. PubMed ID: 21638289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The new X-ray mapping: X-ray spectrum imaging above 100 kHz output count rate with the silicon drift detector.
    Newbury DE
    Microsc Microanal; 2006 Feb; 12(1):26-35. PubMed ID: 17481339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS).
    Newbury DE; Ritchie NW
    J Mater Sci; 2015; 50(2):493-518. PubMed ID: 26346887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total rate imaging with x-rays (TRIX)--a simple method of forming a non-projection x-ray image in the SEM using an energy dispersive detector and its application to biological specimens.
    Ingram P; Shelburne JD
    Scan Electron Microsc; 1980; (Pt 2):285-95. PubMed ID: 7423121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?
    Newbury DE; Ritchie NW
    Scanning; 2013; 35(3):141-68. PubMed ID: 22886950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Electron-Excited X-Ray Microanalysis of Borides, Carbides, Nitrides, Oxides, and Fluorides with Scanning Electron Microscopy/Silicon Drift Detector Energy-Dispersive Spectrometry (SEM/SDD-EDS) and NIST DTSA-II.
    Newbury DE; Ritchie NW
    Microsc Microanal; 2015 Oct; 21(5):1327-40. PubMed ID: 26365439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of Trace Constituents by Electron-Excited X-Ray Microanalysis with Energy-Dispersive Spectrometry.
    Newbury DE; Ritchie NW
    Microsc Microanal; 2016 Jun; 22(3):520-35. PubMed ID: 27329308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray spectrometry and spectrum image mapping at output count rates above 100 kHz with a silicon drift detector on a scanning electron microscope.
    Newbury DE
    Scanning; 2005; 27(5):227-39. PubMed ID: 16268175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron-Excited X-ray Microanalysis by Energy Dispersive Spectrometry at 50: Analytical Accuracy, Precision, Trace Sensitivity, and Quantitative Compositional Mapping.
    Newbury DE; Ritchie NWM
    Microsc Microanal; 2019 Oct; 25(5):1075-1105. PubMed ID: 31439058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining mineral content variations in bone using backscattered electron imaging.
    Bloebaum RD; Skedros JG; Vajda EG; Bachus KN; Constantz BR
    Bone; 1997 May; 20(5):485-90. PubMed ID: 9145247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A system for acquiring simultaneous electron energy-loss and X-ray spectrum-images.
    Feng J; Somlyo AV; Somlyo AP
    J Microsc; 2004 Jul; 215(Pt 1):92-9. PubMed ID: 15230880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition quantification of electron-transparent samples by backscattered electron imaging in scanning electron microscopy.
    Müller E; Gerthsen D
    Ultramicroscopy; 2017 Feb; 173():71-75. PubMed ID: 27940341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-field electron imaging and X-ray elemental mapping unveil the morphology, structure, and fractal features of a Cretaceous fossil at the centimeter scale.
    Oliveira NC; Silva JH; Barros OA; Pinheiro AP; Santana W; Saraiva AA; Ferreira OP; Freire PT; Paula AJ
    Anal Chem; 2015 Oct; 87(19):10088-95. PubMed ID: 26344658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing compositional backscattered electron contrast in scanning electron microscopy.
    Timischl F; Inoue N
    Ultramicroscopy; 2018 Mar; 186():82-93. PubMed ID: 29275175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The backscatter electron signal as an additional tool for phase segmentation in electron backscatter diffraction.
    Payton EJ; Nolze G
    Microsc Microanal; 2013 Aug; 19(4):929-41. PubMed ID: 23575349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compositional contrast of uncoated fungal spores and stained section-face by low-loss backscattered electron imaging.
    Kim KW; Jaksch H
    Micron; 2009 Oct; 40(7):724-9. PubMed ID: 19487128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of secondary electron detectors for compositional studies on embedded biological material.
    Scala C; Pasquinelli G; Martegani F; Laschi R
    Scan Electron Microsc; 1985; (Pt 4):1709-18. PubMed ID: 4095505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!
    Newbury DE; Ritchie NW
    Microsc Microanal; 2016 Aug; 22(4):735-53. PubMed ID: 27515566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-Ray Microanalysis in the Variable Pressure (Environmental) Scanning Electron Microscope.
    Newbury DE
    J Res Natl Inst Stand Technol; 2002; 107(6):567-603. PubMed ID: 27446754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volumes from which calcium and phosphorus X-rays arise in electron probe emission microanalysis of bone: Monte Carlo simulation.
    Howell PG; Boyde A
    Calcif Tissue Int; 2003 Jun; 72(6):745-9. PubMed ID: 14563004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.