These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Heteroscorpionate rare-earth initiators for the controlled ring-opening polymerization of cyclic esters. Otero A; Lara-Sánchez A; Fernández-Baeza J; Alonso-Moreno C; Márquez-Segovia I; Sánchez-Barba LF; Castro-Osma JA; Rodríguez AM Dalton Trans; 2011 May; 40(17):4687-96. PubMed ID: 21394326 [TBL] [Abstract][Full Text] [Related]
23. Developing new methods for the mono-end functionalization of living ring opening metathesis polymers. Kilbinger AF Chimia (Aarau); 2012; 66(3):99-103. PubMed ID: 22546252 [TBL] [Abstract][Full Text] [Related]
24. Anionic Polymerization of 1,3-Cyclohexadiene with Alkyllithium/Amine Systems. Characteristics of n-Butyllithium/N,N,N',N'-Tetramethylethylenediamine System for Living Anionic Polymerization. Natori I; Inoue S Macromolecules; 1998 Jul; 31(15):4687-94. PubMed ID: 9680400 [TBL] [Abstract][Full Text] [Related]
25. 1,1,3,3-Tetramethylguanidine-Mediated Zwitterionic Ring-Opening Polymerization of Sarcosine-Derived Siefker D; Chan BA; Zhang M; Nho JW; Zhang D Macromolecules; 2022 Apr; 55(7):2509-2516. PubMed ID: 35444344 [TBL] [Abstract][Full Text] [Related]
26. Unprecedented control over polymerization of n-hexyl isocyanate using an anionic initiator having synchronized function of chain-end protection. Ahn JH; Shin YD; Nath GY; Park SY; Rahman MS; Samal S; Lee JS J Am Chem Soc; 2005 Mar; 127(12):4132-3. PubMed ID: 15783170 [TBL] [Abstract][Full Text] [Related]
27. Nucleophilically assisted and cationic ring-opening polymerization of tin-bridged [1]ferrocenophanes. Baumgartner T; Jäkle F; Rulkens R; Zech G; Lough AJ; Manners I J Am Chem Soc; 2002 Aug; 124(34):10062-70. PubMed ID: 12188670 [TBL] [Abstract][Full Text] [Related]
28. Organocatalyzed Anionic Ring-Opening Polymerizations of Wang X; Liu Y; Li Z; Wang H; Gebru H; Chen S; Zhu H; Wei F; Guo K ACS Macro Lett; 2017 Dec; 6(12):1331-1336. PubMed ID: 35650812 [TBL] [Abstract][Full Text] [Related]
29. Organocatalytic controlled/living ring-opening polymerization of cyclotrisiloxanes initiated by water with strong organic base catalysts. Fuchise K; Igarashi M; Sato K; Shimada S Chem Sci; 2018 Mar; 9(11):2879-2891. PubMed ID: 29732072 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and structural studies of lithium and sodium complexes with OOO-tridentate bis(phenolate) ligands: effective catalysts for the ring-opening polymerization of L-lactide. Huang Y; Tsai YH; Hung WC; Lin CS; Wang W; Huang JH; Dutta S; Lin CC Inorg Chem; 2010 Oct; 49(20):9416-25. PubMed ID: 20843075 [TBL] [Abstract][Full Text] [Related]
32. In situ generation of carbenes: a general and versatile platform for organocatalytic living polymerization. Nyce GW; Glauser T; Connor EF; Möck A; Waymouth RM; Hedrick JL J Am Chem Soc; 2003 Mar; 125(10):3046-56. PubMed ID: 12617671 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of hybrid block copolymers via integrated ring-opening metathesis polymerization and polymerization of NCA. Bai Y; Lu H; Ponnusamy E; Cheng J Chem Commun (Camb); 2011 Oct; 47(38):10830-2. PubMed ID: 21869956 [TBL] [Abstract][Full Text] [Related]
34. A computational insight into a metal mediated pathway for the ring-opening polymerization (ROP) of lactides by an ionic {(NHC)2Ag}(+)X(-) (X = halide) type N-heterocyclic carbene (NHC) complex. Stephen R; Sunoj RB; Ghosh P Dalton Trans; 2011 Oct; 40(39):10156-61. PubMed ID: 21879075 [TBL] [Abstract][Full Text] [Related]
35. Complexities in the ring-opening polymerization of lactide by chiral salen aluminum initiators. Chisholm MH; Gallucci JC; Quisenberry KT; Zhou Z Inorg Chem; 2008 Apr; 47(7):2613-24. PubMed ID: 18327904 [TBL] [Abstract][Full Text] [Related]
36. Polymers Containing Diethylsiloxane Segment and Active Functional Group by Ring-Opening Polymerization of Hexaethylcyclotrisiloxane under the Catalysis of Linear Chlorinated Phosphazene Acid. Jin C; Yang H; Zhang Y; Zhang S; Long X; Dong H; Song Y; Qu Z; Wu C Polymers (Basel); 2024 Oct; 16(19):. PubMed ID: 39408545 [TBL] [Abstract][Full Text] [Related]
38. Non-steady-state living polymerization: a new route to control cationic ring-opening polymerization (CROP) of oxetane via an activation chain end (ACE) mechanism at ambient temperature. Bouchékif H; Philbin MI; Colclough E; Amass AJ Chem Commun (Camb); 2005 Aug; (30):3870-2. PubMed ID: 16041445 [TBL] [Abstract][Full Text] [Related]
39. Titanium alkoxides as initiators for the controlled polymerization of lactide. Kim Y; Jnaneshwara GK; Verkade JG Inorg Chem; 2003 Mar; 42(5):1437-47. PubMed ID: 12611508 [TBL] [Abstract][Full Text] [Related]
40. N-heterocyclic carbene-induced zwitterionic ring-opening polymerization of ethylene oxide and direct synthesis of alpha,omega-difunctionalized poly(ethylene oxide)s and poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymers. Raynaud J; Absalon C; Gnanou Y; Taton D J Am Chem Soc; 2009 Mar; 131(9):3201-9. PubMed ID: 19209910 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]