BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21638498)

  • 21. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications.
    Li Y; Wang P; Wang L; Lin X
    Biosens Bioelectron; 2007 Jun; 22(12):3120-5. PubMed ID: 17350819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.
    Pint CL; Xu YQ; Pasquali M; Hauge RH
    ACS Nano; 2008 Sep; 2(9):1871-8. PubMed ID: 19206427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrically conductive polymeric materials with high stretchability and excellent elasticity by a surface coating method.
    Li Y; Zhao L; Shimizu H
    Macromol Rapid Commun; 2011 Feb; 32(3):289-94. PubMed ID: 21433173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrathin transparent conductive films of polymer-modified multiwalled carbon nanotubes.
    Bocharova V; Kiriy A; Oertel U; Stamm M; Stoffelbach F; Jérôme R; Detrembleur C
    J Phys Chem B; 2006 Aug; 110(30):14640-4. PubMed ID: 16869566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of transparent carbon nanotube networks of homogeneous electronic type.
    Jackson RK; Munro A; Nebesny K; Armstrong N; Graham S
    ACS Nano; 2010 Mar; 4(3):1377-84. PubMed ID: 20201542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dispersion and characterization of arc discharge single-walled carbon nanotubes--towards conducting transparent films.
    Rösner B; Guldi DM; Chen J; Minett AI; Fink RH
    Nanoscale; 2014 Apr; 6(7):3695-703. PubMed ID: 24567084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing the electrical conductivity of carbon-nanotube-based transparent conductive films using functionalized few-walled carbon nanotubes decorated with palladium nanoparticles as fillers.
    Li YA; Tai NH; Chen SK; Tsai TY
    ACS Nano; 2011 Aug; 5(8):6500-6. PubMed ID: 21780845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macroscopic electrical properties of ordered single-walled carbon nanotube networks.
    Vichchulada P; Zhang Q; Duncan A; Lay MD
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):467-73. PubMed ID: 20356193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of dispersion conditions of single-walled carbon nanotubes on the electrical characteristics of thin film network transistors.
    Barman SN; LeMieux MC; Baek J; Rivera R; Bao Z
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2672-8. PubMed ID: 20738099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Side group of poly(3-alkylthiophene)s controlled dispersion of single-walled carbon nanotubes for transparent conducting film.
    Chen WC; Lien HT; Cheng TW; Su C; Chong CW; Ganguly A; Chen KH; Chen LC
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4616-22. PubMed ID: 25668597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Raman characterization of thermal conduction in transparent carbon nanotube films.
    Kim D; Zhu L; Han CS; Kim JH; Baik S
    Langmuir; 2011 Dec; 27(23):14532-8. PubMed ID: 22004446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient fabrication of wafer scale thin film of individualized single-walled carbon nanotubes by dual-nozzle spin casting.
    Kim YS; Kwon S; Shin DH; Shim HC; Woo JY; Lim D; Kwak YK; Kim S; Han CS
    Rev Sci Instrum; 2010 Jun; 81(6):063905. PubMed ID: 20590250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes.
    Jang S; Jang H; Lee Y; Suh D; Baik S; Hong BH; Ahn JH
    Nanotechnology; 2010 Oct; 21(42):425201. PubMed ID: 20858937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contamination-free and damage-free patterning of single-walled carbon nanotube transparent conductive films on flexible substrates.
    Su Y; Du J; Pei S; Liu C; Cheng HM
    Nanoscale; 2011 Nov; 3(11):4571-4. PubMed ID: 22006236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel strategy for high-performance transparent conductive films based on double-walled carbon nanotubes.
    He Y; Jin H; Qiu S; Li Q
    Chem Commun (Camb); 2017 Mar; 53(20):2934-2937. PubMed ID: 28224140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sheet resistance characterization of locally anisotropic transparent conductive films made of aligned metal-enriched single-walled carbon nanotubes.
    Kang H; Kim D; Baik S
    Phys Chem Chem Phys; 2014 Sep; 16(35):18759-64. PubMed ID: 25075461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible transparent conducting single-wall carbon nanotube film with network bridging method.
    Song YI; Yang CM; Kim DY; Kanoh H; Kaneko K
    J Colloid Interface Sci; 2008 Feb; 318(2):365-71. PubMed ID: 18036603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous and scalable fabrication of transparent conducting carbon nanotube films.
    Dan B; Irvin GC; Pasquali M
    ACS Nano; 2009 Apr; 3(4):835-43. PubMed ID: 19354279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond.
    Lu F; Meziani MJ; Cao L; Sun YP
    Langmuir; 2011 Apr; 27(8):4339-50. PubMed ID: 20942475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.