These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21638764)

  • 1. A flow cytometric method to assess nanoparticle uptake in bacteria.
    Kumar A; Pandey AK; Singh SS; Shanker R; Dhawan A
    Cytometry A; 2011 Sep; 79(9):707-12. PubMed ID: 21638764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells.
    Kumar A; Pandey AK; Singh SS; Shanker R; Dhawan A
    Chemosphere; 2011 May; 83(8):1124-32. PubMed ID: 21310462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli.
    Kumar A; Pandey AK; Singh SS; Shanker R; Dhawan A
    Free Radic Biol Med; 2011 Nov; 51(10):1872-81. PubMed ID: 21920432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish.
    Johnston BD; Scown TM; Moger J; Cumberland SA; Baalousha M; Linge K; van Aerle R; Jarvis K; Lead JR; Tyler CR
    Environ Sci Technol; 2010 Feb; 44(3):1144-51. PubMed ID: 20050652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay.
    Pan X; Redding JE; Wiley PA; Wen L; McConnell JS; Zhang B
    Chemosphere; 2010 Mar; 79(1):113-6. PubMed ID: 20106502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of TiO2 nanoparticles in cells by flow cytometry.
    Zucker RM; Massaro EJ; Sanders KM; Degn LL; Boyes WK
    Cytometry A; 2010 Jul; 77(7):677-85. PubMed ID: 20564539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of TiO2 nanoparticles in cells by flow cytometry.
    Zucker RM; Daniel KM
    Methods Mol Biol; 2012; 906():497-509. PubMed ID: 22791459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans.
    Wang H; Wick RL; Xing B
    Environ Pollut; 2009 Apr; 157(4):1171-7. PubMed ID: 19081167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles.
    Hsiao IL; Huang YJ
    Chem Res Toxicol; 2011 Mar; 24(3):303-13. PubMed ID: 21341804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of titanium dioxide nanoparticle effects in bacteria: association, uptake, mutagenicity, co-mutagenicity and DNA repair inhibition.
    Butler KS; Casey BJ; Garborcauskas GV; Dair BJ; Elespuru RK
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Jul; 768():14-22. PubMed ID: 24769488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles.
    You J; Zhang Y; Hu Z
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):161-7. PubMed ID: 21398101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study.
    Monteiro-Riviere NA; Wiench K; Landsiedel R; Schulte S; Inman AO; Riviere JE
    Toxicol Sci; 2011 Sep; 123(1):264-80. PubMed ID: 21642632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicological effect of ZnO nanoparticles based on bacteria.
    Huang Z; Zheng X; Yan D; Yin G; Liao X; Kang Y; Yao Y; Huang D; Hao B
    Langmuir; 2008 Apr; 24(8):4140-4. PubMed ID: 18341364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicological assessment of TiO2 nanoparticles by recombinant Escherichia coli bacteria.
    Jiang G; Shen Z; Niu J; Bao Y; Chen J; He T
    J Environ Monit; 2011 Jan; 13(1):42-8. PubMed ID: 21127813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles.
    Kocbek P; Teskac K; Kreft ME; Kristl J
    Small; 2010 Sep; 6(17):1908-17. PubMed ID: 20677183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage.
    Xiong D; Fang T; Yu L; Sima X; Zhu W
    Sci Total Environ; 2011 Mar; 409(8):1444-52. PubMed ID: 21296382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of metal oxide nanoparticles on marine phytoplankton.
    Miller RJ; Lenihan HS; Muller EB; Tseng N; Hanna SK; Keller AA
    Environ Sci Technol; 2010 Oct; 44(19):7329-34. PubMed ID: 20469893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of internalization of chromium oxide nano-particles in Escherichia coli by flow cytometry.
    Khatoon I; Vajpayee P; Singh G; Pandey AK; Dhawan A; Gupta KC; Shanker R
    J Biomed Nanotechnol; 2011 Feb; 7(1):168-9. PubMed ID: 21485855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial toxicity comparison between nano- and micro-scaled oxide particles.
    Jiang W; Mashayekhi H; Xing B
    Environ Pollut; 2009 May; 157(5):1619-25. PubMed ID: 19185963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.