BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 21639141)

  • 1. A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins.
    Ahmed A; Rippmann F; Barnickel G; Gohlke H
    J Chem Inf Model; 2011 Jul; 51(7):1604-22. PubMed ID: 21639141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins.
    Krüger DM; Ahmed A; Gohlke H
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W310-6. PubMed ID: 22669906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HIV-1 TAR RNA spontaneously undergoes relevant apo-to-holo conformational transitions in molecular dynamics and constrained geometrical simulations.
    Fulle S; Christ NA; Kestner E; Gohlke H
    J Chem Inf Model; 2010 Aug; 50(8):1489-501. PubMed ID: 20726603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions.
    Olson MA; Feig M; Brooks CL
    J Comput Chem; 2008 Apr; 29(5):820-31. PubMed ID: 17876760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem.
    Jackson RM; Gabb HA; Sternberg MJ
    J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric algorithms for the conformational analysis of long protein loops.
    Cortés J; Siméon T; Remaud-Siméon M; Tran V
    J Comput Chem; 2004 May; 25(7):956-67. PubMed ID: 15027107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometry-based sampling of conformational transitions in proteins.
    Seeliger D; Haas J; de Groot BL
    Structure; 2007 Nov; 15(11):1482-92. PubMed ID: 17997973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding funnels and conformational transitions via hinge-bending motions.
    Kumar S; Ma B; Tsai CJ; Wolfson H; Nussinov R
    Cell Biochem Biophys; 1999; 31(2):141-64. PubMed ID: 10593256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.
    Ahmed A; Villinger S; Gohlke H
    Proteins; 2010 Dec; 78(16):3341-52. PubMed ID: 20848551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking.
    Smith GR; Sternberg MJ; Bates PA
    J Mol Biol; 2005 Apr; 347(5):1077-101. PubMed ID: 15784265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses.
    Jimenez-Roldan JE; Freedman RB; Römer RA; Wells SA
    Phys Biol; 2012 Feb; 9(1):016008. PubMed ID: 22313618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An NMA-guided path planning approach for computing large-amplitude conformational changes in proteins.
    Kirillova S; Cortés J; Stefaniu A; Siméon T
    Proteins; 2008 Jan; 70(1):131-43. PubMed ID: 17640073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting large-scale conformational changes in proteins using energy-weighted normal modes.
    Palmer DS; Jensen F
    Proteins; 2011 Oct; 79(10):2778-93. PubMed ID: 21905106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BiGGER: a new (soft) docking algorithm for predicting protein interactions.
    Palma PN; Krippahl L; Wampler JE; Moura JJ
    Proteins; 2000 Jun; 39(4):372-84. PubMed ID: 10813819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of protein conformational states by normal-mode frequencies.
    Hall BA; Kaye SL; Pang A; Perera R; Biggin PC
    J Am Chem Soc; 2007 Sep; 129(37):11394-401. PubMed ID: 17715919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
    Kitao A; Wagner G
    Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale modeling of macromolecular conformational changes combining concepts from rigidity and elastic network theory.
    Ahmed A; Gohlke H
    Proteins; 2006 Jun; 63(4):1038-51. PubMed ID: 16493629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.