These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 21639176)
1. Determination of accurate electroosmotic mobility and analyte effective mobility values in the presence of charged interacting agents in capillary electrophoresis. Williams BA; Vigh G Anal Chem; 1997 Nov; 69(21):4445-51. PubMed ID: 21639176 [TBL] [Abstract][Full Text] [Related]
2. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles. Grimes BA; Liapis AI J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509 [TBL] [Abstract][Full Text] [Related]
3. Determination of effective mobilities of EOF markers in BGE containing sulfated β-cyclodextrin by a two-detector method. Müllerová L; Dubský P; Svobodová J; Gaš B Electrophoresis; 2013 Mar; 34(5):768-76. PubMed ID: 23192321 [TBL] [Abstract][Full Text] [Related]
4. Mobilization of electroosmotic flow markers in capillary zone electrophoresis. Martínková E; Křížek T; Kubíčková A; Coufal P Electrophoresis; 2021 Apr; 42(7-8):932-938. PubMed ID: 33570209 [TBL] [Abstract][Full Text] [Related]
5. Quantitative analysis and synthesis of the electrokinetic mass transport and adsorption mechanisms of a charged adsorbate in capillary electrochromatography systems employing charged adsorbent particles. Grimes BA; Liapis AI J Chromatogr A; 2001 Jun; 919(1):157-79. PubMed ID: 11459302 [TBL] [Abstract][Full Text] [Related]
6. A nonlinear electrophoretic model for PeakMaster: part IV. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Experimental verification. Beneš M; Svobodová J; Hruška V; Dvořák M; Zusková I; Gaš B J Chromatogr A; 2012 Dec; 1267():109-15. PubMed ID: 22789753 [TBL] [Abstract][Full Text] [Related]
8. Response patterns with indirect UV detection in capillary zone electrophoresis. Lu B; Westerlund D Electrophoresis; 1998 Jul; 19(10):1683-90. PubMed ID: 9719546 [TBL] [Abstract][Full Text] [Related]
9. Comparison of capillary zone electrophoresis and isotachophoresis determination of dimethindene enantiomers in pharmaceuticals using charged carboxyethyl-beta-cyclodextrin as a chiral selector. Mikus P; Kubacak P; Valaskova I; Havranek E Methods Find Exp Clin Pharmacol; 2006 Nov; 28(9):595-9. PubMed ID: 17200724 [TBL] [Abstract][Full Text] [Related]
10. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: propanol as background electrolyte solvent. Palonen S; Porras SP; Jussila M; Riekkola ML Electrophoresis; 2003 May; 24(10):1565-76. PubMed ID: 12761786 [TBL] [Abstract][Full Text] [Related]
11. Electrokinetic transport in nanochannels. 1. Theory. Pennathur S; Santiago JG Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573 [TBL] [Abstract][Full Text] [Related]
12. A nonlinear electrophoretic model for PeakMaster: part III. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Theory. Hruška V; Svobodová J; Beneš M; Gaš B J Chromatogr A; 2012 Dec; 1267():102-8. PubMed ID: 22818776 [TBL] [Abstract][Full Text] [Related]
13. Monitoring the electroosmotic flow in capillary electrophoresis using contactless conductivity detection and thermal marks. Saito RM; Neves CA; Lopes FS; Blanes L; Brito-Neto JG; do Lago CL Anal Chem; 2007 Jan; 79(1):215-23. PubMed ID: 17194142 [TBL] [Abstract][Full Text] [Related]
15. Determination of stability constants of complexes of neutral analytes with charged cyclodextrins by affinity capillary electrophoresis. Beneš M; Zusková I; Svobodová J; Gaš B Electrophoresis; 2012 Mar; 33(6):1032-9. PubMed ID: 22528423 [TBL] [Abstract][Full Text] [Related]
16. Method for the elimination of chromatographic bias from measured capillary electrophoretic effective mobility values. Cai H; Vigh G Anal Chem; 1998 Nov; 70(21):4640-3. PubMed ID: 21644701 [TBL] [Abstract][Full Text] [Related]
17. Capillary electrochromatography of peptides on a neutral porous monolith with annular electroosmotic flow generation. Li Y; Xiang R; Horváth C; Wilkins JA Electrophoresis; 2004 Feb; 25(4-5):545-53. PubMed ID: 14981680 [TBL] [Abstract][Full Text] [Related]
18. Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary. Kaneta T; Ueda T; Hata K; Imasaka T J Chromatogr A; 2006 Feb; 1106(1-2):52-5. PubMed ID: 16443452 [TBL] [Abstract][Full Text] [Related]
19. Determining the electrophoretic mobility and translational diffusion coefficients of DNA molecules in free solution. Stellwagen E; Stellwagen NC Electrophoresis; 2002 Aug; 23(16):2794-803. PubMed ID: 12210184 [TBL] [Abstract][Full Text] [Related]
20. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: ethanol as background electrolyte solvent. Palonen S; Jussila M; Porras SP; Riekkola ML Electrophoresis; 2004 Jan; 25(2):344-54. PubMed ID: 14743487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]