BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2163919)

  • 1. [The temperature dependence of the respiration and phospholipid content of the mitochondria in the organs of heat-adapted rats].
    Seferova RI; Manenkova ID; Sergienko EV; Babaeva AKh
    Fiziol Zh SSSR Im I M Sechenova; 1990 Feb; 76(2):247-52. PubMed ID: 2163919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Change in the lipid composition of the inner mitochondrial membranes in rat organs during adaptation to heat].
    Zubareva EV; Seferova RI; Denisova NA
    Vopr Med Khim; 1991; 37(1):28-31. PubMed ID: 1858336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid composition of phospholipids in mitochondria and microsomes during diethylnitrosamine carcinogenesis in rat liver.
    Canuto RA; Biocca ME; Muzio G; Dianzani MU
    Cell Biochem Funct; 1989 Jan; 7(1):11-9. PubMed ID: 2752533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial function in seasonal acclimatization versus latitudinal adaptation to cold in the lugworm Arenicola marina (L.).
    Sommer AM; Pörtner HO
    Physiol Biochem Zool; 2004; 77(2):174-86. PubMed ID: 15095238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions.
    Kraffe E; Marty Y; Guderley H
    J Exp Biol; 2007 Jan; 210(Pt 1):149-65. PubMed ID: 17170158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes in the phospholipid composition of mitochondria during heat incubation].
    Rakhimov MM; Almatov KT; Mirtalipov DT; Gorbataia ON; Kasimova GM
    Biokhimiia; 1989 Jun; 54(6):948-55. PubMed ID: 2790079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in the phospholipid and cholesterol content of rat tissues during adaptation to high altitude at different environmental temperatures].
    Ternovoĭ VA; Iakovlev VM
    Zh Evol Biokhim Fiziol; 1993; 29(1):22-6. PubMed ID: 8498110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioenergetics in aging: mitochondrial proton leak in aging rat liver, kidney and heart.
    Serviddio G; Bellanti F; Romano AD; Tamborra R; Rollo T; Altomare E; Vendemiale G
    Redox Rep; 2007; 12(1):91-5. PubMed ID: 17263918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity of the inner mitochondrial membrane through the unequal distribution of phospholipid unsaturation.
    Pérez P; López-Moratalla N; Santiago E
    Rev Esp Fisiol; 1973 Sep; 29(3):239-45. PubMed ID: 4364823
    [No Abstract]   [Full Text] [Related]  

  • 11. [Respiration and oxidative phosphorylation in liver mitochondria of bass (Morone labrax) and their dependence on temperature].
    Ventrella V; Pagliarani A; Trigari G; Borgatti AR
    Boll Soc Ital Biol Sper; 1982 Dec; 58(23):1509-15. PubMed ID: 6131678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of temperature in vivo and in vitro on oxidation and phosphorylation in the myocardial mitochondria of white rats].
    Preobrazhenskaia VK
    Biull Eksp Biol Med; 1984 Aug; 98(8):173-5. PubMed ID: 6466852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory activity and oxidative phosphorylation in mitochondria of the rat brain and liver under conditions of elevated temperature of the environment.
    Skonieczna M; Bicz W
    Med Pr; 1984; 35(4):263-7. PubMed ID: 6521637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384.
    Alvarez-Ordóñez A; Fernández A; López M; Bernardo A
    Food Microbiol; 2009 May; 26(3):347-53. PubMed ID: 19269580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dynamics of the fatty acid composition of guinea pig liver and lung mitochondrial lipids in experimental tuberculosis].
    Maliuk VI; Skul'bashevskii LZ; Maksimova AV
    Vopr Med Khim; 1980; 26(6):755-9. PubMed ID: 7456406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fatty acid composition of mitochondrial phospholipids of the ischemic heart].
    Dagis AI; Toleĭkis AI; Prashkiavichius AK
    Biull Eksp Biol Med; 1985 Jan; 99(1):43-5. PubMed ID: 3967069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in the lipid composition of mitochondrial membranes following exposure to low temperatures].
    Bondarenko TP; Belous AM
    Ukr Biokhim Zh; 1977; 49(2):30-3. PubMed ID: 867536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic demand, oxygen supply, and critical temperatures in the Antarctic bivalve Laternula elliptica.
    Peck LS; Pörtner HO; Hardewig I
    Physiol Biochem Zool; 2002; 75(2):123-33. PubMed ID: 12024288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different levels of linoleic acid in the diet of pigs. 2. The effect on the fatty acid composition of mitochondrial phospholipids and mitochondrial function.
    Christensen K
    Z Tierphysiol Tierernahr Futtermittelkd; 1974 Mar; 33(1):10-20. PubMed ID: 4826442
    [No Abstract]   [Full Text] [Related]  

  • 20. [Effect of changes in the membrane lipid composition on the activity of respiratory chain enzymes in rat liver mitochondria].
    Ishankhodzhaev TM; Bornikov VT; Zaĭnutdinov BR; Saatov TS
    Biokhimiia; 1987 Feb; 52(2):220-4. PubMed ID: 3567246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.