These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21639420)

  • 1. Integrating steepest-descent reaction pathways for large molecules.
    Hratchian HP; Frisch MJ
    J Chem Phys; 2011 May; 134(20):204103. PubMed ID: 21639420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steepest descent reaction path integration using a first-order predictor-corrector method.
    Hratchian HP; Frisch MJ; Schlegel HB
    J Chem Phys; 2010 Dec; 133(22):224101. PubMed ID: 21171677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate reaction paths using a Hessian based predictor-corrector integrator.
    Hratchian HP; Schlegel HB
    J Chem Phys; 2004 Jun; 120(21):9918-24. PubMed ID: 15268010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Hessian Updating To Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method.
    Hratchian HP; Schlegel HB
    J Chem Theory Comput; 2005 Jan; 1(1):61-9. PubMed ID: 26641116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of methods for finding saddle points without knowledge of the final states.
    Olsen RA; Kroes GJ; Henkelman G; Arnaldsson A; Jónsson H
    J Chem Phys; 2004 Nov; 121(20):9776-92. PubMed ID: 15549851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein simulations using techniques suitable for very large systems: the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics.
    Mathiowetz AM; Jain A; Karasawa N; Goddard WA
    Proteins; 1994 Nov; 20(3):227-47. PubMed ID: 7892172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QM:QM electronic embedding using Mulliken atomic charges: energies and analytic gradients in an ONIOM framework.
    Hratchian HP; Parandekar PV; Raghavachari K; Frisch MJ; Vreven T
    J Chem Phys; 2008 Jan; 128(3):034107. PubMed ID: 18205488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active-space two-electron reduced-density-matrix method: complete active-space calculations without diagonalization of the N-electron Hamiltonian.
    Gidofalvi G; Mazziotti DA
    J Chem Phys; 2008 Oct; 129(13):134108. PubMed ID: 19045079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Potential Energy Surfaces of Large Systems with Artificial Force Induced Reaction Method in Combination with ONIOM and Microiteration.
    Maeda S; Abe E; Hatanaka M; Taketsugu T; Morokuma K
    J Chem Theory Comput; 2012 Dec; 8(12):5058-63. PubMed ID: 26593196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient self-consistent field method for large systems of weakly interacting components.
    Khaliullin RZ; Head-Gordon M; Bell AT
    J Chem Phys; 2006 May; 124(20):204105. PubMed ID: 16774317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct determination of reaction paths and stationary points on potential of mean force surfaces.
    Li G; Cui Q
    J Mol Graph Model; 2005 Oct; 24(2):82-93. PubMed ID: 16005650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel iterative reaction path optimization in ab initio quantum mechanical/molecular mechanical modeling of enzyme reactions.
    Liu H; Lu Z; Cisneros GA; Yang W
    J Chem Phys; 2004 Jul; 121(2):697-706. PubMed ID: 15260596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction rate theory: what it was, where is it today, and where is it going?
    Pollak E; Talkner P
    Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications and assessment of QM:QM electronic embedding using generalized asymmetric Mulliken atomic charges.
    Parandekar PV; Hratchian HP; Raghavachari K
    J Chem Phys; 2008 Oct; 129(14):145101. PubMed ID: 19045166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microiterative intrinsic reaction coordinate method for large QM/MM systems.
    Polyak I; Boulanger E; Sen K; Thiel W
    Phys Chem Chem Phys; 2013 Sep; 15(34):14188-95. PubMed ID: 23799539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path integral calculation of thermal rate constants within the quantum instanton approximation: application to the H + CH4 --> H2 + CH3 hydrogen abstraction reaction in full Cartesian space.
    Zhao Y; Yamamoto T; Miller WH
    J Chem Phys; 2004 Feb; 120(7):3100-7. PubMed ID: 15268462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.