These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

622 related articles for article (PubMed ID: 21639446)

  • 1. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules.
    Tanaka KK; Tanaka H; Yamamoto T; Kawamura K
    J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of the nucleation of water: determining the sticking probability and formation energy of a cluster.
    Tanaka KK; Kawano A; Tanaka H
    J Chem Phys; 2014 Mar; 140(11):114302. PubMed ID: 24655175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK; Kawamura K; Tanaka H; Nakazawa K
    J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large scale molecular dynamics simulations of homogeneous nucleation.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    J Chem Phys; 2013 Aug; 139(7):074309. PubMed ID: 23968094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of some nucleation theories with a nonsharp droplet-vapor interface.
    Napari I; Julin J; Vehkamäki H
    J Chem Phys; 2010 Oct; 133(15):154503. PubMed ID: 20969399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation rate isotherms of argon from molecular dynamics simulations.
    Wedekind J; Wölk J; Reguera D; Strey R
    J Chem Phys; 2007 Oct; 127(15):154515. PubMed ID: 17949181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal nucleation rate isotherms in Lennard-Jones liquids.
    Baidakov VG; Tipeev AO; Bobrov KS; Ionov GV
    J Chem Phys; 2010 Jun; 132(23):234505. PubMed ID: 20572719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-liquid nucleation in a two dimensional system.
    Santra M; Chakrabarty S; Bagchi B
    J Chem Phys; 2008 Dec; 129(23):234704. PubMed ID: 19102549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cluster sizes in direct and indirect molecular dynamics simulations of nucleation.
    Napari I; Julin J; Vehkamäki H
    J Chem Phys; 2009 Dec; 131(24):244511. PubMed ID: 20059083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica.
    Saika-Voivod I; Poole PH; Bowles RK
    J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended study of molecular dynamics simulation of homogeneous vapor-liquid nucleation of water.
    Matsubara H; Koishi T; Ebisuzaki T; Yasuoka K
    J Chem Phys; 2007 Dec; 127(21):214507. PubMed ID: 18067364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy of cluster formation and a new scaling relation for the nucleation rate.
    Tanaka KK; Diemand J; Angélil R; Tanaka H
    J Chem Phys; 2014 May; 140(19):194310. PubMed ID: 24852541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connection between the virial equation of state and physical clusters in a low density vapor.
    Merikanto J; Zapadinsky E; Lauri A; Napari I; Vehkamäki H
    J Chem Phys; 2007 Sep; 127(10):104303. PubMed ID: 17867743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous condensation of the Lennard-Jones vapor onto a nanoscale seed particle.
    Inci L; Bowles RK
    J Chem Phys; 2011 Mar; 134(11):114505. PubMed ID: 21428630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-step vapor-crystal nucleation close below triple point.
    van Meel JA; Page AJ; Sear RP; Frenkel D
    J Chem Phys; 2008 Nov; 129(20):204505. PubMed ID: 19045871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous SPC/E water nucleation in large molecular dynamics simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    J Chem Phys; 2015 Aug; 143(6):064507. PubMed ID: 26277145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.