These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 21639523)

  • 21. Quadrupolar-coupling-specific binomial pulse sequences for in vivo 23Na NMR and MRI.
    Laustsen C; Ringgaard S; Pedersen M; Nielsen NC
    J Magn Reson; 2010 Sep; 206(1):139-46. PubMed ID: 20673642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physical principles of magnetic resonance imaging.
    Seeger LL
    Clin Orthop Relat Res; 1989 Jul; (244):7-16. PubMed ID: 2663291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional T1rho-weighted MRI at 1.5 Tesla.
    Borthakur A; Wheaton A; Charagundla SR; Shapiro EM; Regatte RR; Akella SV; Kneeland JB; Reddy R
    J Magn Reson Imaging; 2003 Jun; 17(6):730-6. PubMed ID: 12766904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuronavigation in intraoperative MRI.
    Samset E; Hirschberg H
    Comput Aided Surg; 1999; 4(4):200-7. PubMed ID: 10567098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system.
    Zaitsev M; Dold C; Sakas G; Hennig J; Speck O
    Neuroimage; 2006 Jul; 31(3):1038-50. PubMed ID: 16600642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element.
    Chin S; Gonzalez-Herraez M; Thévenaz L
    Opt Express; 2009 Nov; 17(24):21910-7. PubMed ID: 19997435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D gradient coil design for open MRI systems.
    While PT; Forbes LK; Crozier S
    J Magn Reson; 2010 Nov; 207(1):124-33. PubMed ID: 20850360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A general algorithm for magnetic resonance imaging simulation: a versatile tool to collect information about imaging artefacts and new acquisition techniques.
    Placidi G; Alecci M; Sotgiu A
    Stud Health Technol Inform; 2002; 90():13-7. PubMed ID: 15460653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing gradient coils with reduced hot spot temperatures.
    While PT; Forbes LK; Crozier S
    J Magn Reson; 2010 Mar; 203(1):91-9. PubMed ID: 20036170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Excitation of complicated shapes in three dimensions.
    Sersa I; Macura S
    J Magn Reson; 1998 Dec; 135(2):466-77. PubMed ID: 9878474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a new RF coil and gamma-ray radiation shielding assembly for improved MR image quality in SPECT/MRI.
    Ha S; Hamamura MJ; Roeck WW; Muftuler LT; Nalcioglu O
    Phys Med Biol; 2010 May; 55(9):2495-504. PubMed ID: 20371909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla.
    Martirosian P; Boss A; Deimling M; Kiefer B; Schraml C; Schwenzer NF; Claussen CD; Schick F
    Invest Radiol; 2008 Jan; 43(1):16-26. PubMed ID: 18097273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modification of pulse sequences reduces occupational exposure from MRI switched gradient fields: Preliminary results.
    Wilén J; Hauksson J; Mild KH
    Bioelectromagnetics; 2010 Jan; 31(1):85-7. PubMed ID: 19753611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time Magnetic Resonance Gradient-based Propulsion of a Wireless Microdevice Using Pre-Acquired Roadmap and Dedicated Software Architecture.
    Chanu A; Martel S; Beaudoin G
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():5190-3. PubMed ID: 17281417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hardware and software improvements to a low-cost horizontal parallax holographic video monitor.
    Henrie A; Codling JR; Gneiting S; Christensen JB; Awerkamp P; Burdette MJ; Smalley DE
    Appl Opt; 2018 Jan; 57(1):A122-A133. PubMed ID: 29328137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modularized architecture of address generation units suitable for real-time processing MR data on an FPGA.
    Li L; Wyrwicz AM
    Rev Sci Instrum; 2016 Jun; 87(6):063705. PubMed ID: 27370457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of an MR image processing module on an FPGA chip.
    Li L; Wyrwicz AM
    J Magn Reson; 2015 Jun; 255():51-8. PubMed ID: 25909646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A versatile pulse programmer for magnetic resonance imaging.
    Ning R; Yang G; Li G
    Rev Sci Instrum; 2011 May; 82(5):054301. PubMed ID: 21639523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a pulse programmer for magnetic resonance imaging using a personal computer and a high-speed digital input-output board.
    Hashimoto S; Kose K; Haishi T
    Rev Sci Instrum; 2012 May; 83(5):053702. PubMed ID: 22667620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.
    Handa S; Domalain T; Kose K
    Rev Sci Instrum; 2007 Aug; 78(8):084705. PubMed ID: 17764345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.