BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 21639574)

  • 1. Multiexposure laser speckle contrast imaging of the angiogenic microenvironment.
    Rege A; Murari K; Seifert A; Pathak AP; Thakor NV
    J Biomed Opt; 2011 May; 16(5):056006. PubMed ID: 21639574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis.
    Rege A; Thakor NV; Rhie K; Pathak AP
    Angiogenesis; 2012 Mar; 15(1):87-98. PubMed ID: 22198198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time video-rate perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning.
    Hultman M; Larsson M; Strömberg T; Fredriksson I
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33191685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning in multiexposure laser speckle contrast imaging can replace conventional laser Doppler flowmetry.
    Fredriksson I; Hultman M; Strömberg T; Larsson M
    J Biomed Opt; 2019 Jan; 24(1):1-11. PubMed ID: 30675771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speed-resolved perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning.
    Hultman M; Larsson M; Strömberg T; Fredriksson I
    J Biomed Opt; 2023 Mar; 28(3):036007. PubMed ID: 36950019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic processing of laser speckle images improves spatiotemporal resolution.
    Rege A; Senarathna J; Li N; Thakor NV
    IEEE Trans Biomed Eng; 2012 May; 59(5):1272-80. PubMed ID: 22249596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion-contrast laser speckle imaging of microcirculation within tissue beds in vivo.
    Liu R; Qin J; Wang RK
    J Biomed Opt; 2013 Jun; 18(6):060508. PubMed ID: 23804163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm.
    Humeau-Heurtier A; Mahé G; Abraham P
    Microvasc Res; 2015 Mar; 98():54-61. PubMed ID: 25576743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal in vivo monitoring of rodent glioma models through thinned skull using laser speckle contrast imaging.
    Rege A; Seifert AC; Schlattman D; Ouyang Y; Li KW; Basaldella L; Brem H; Tyler BM; Thakor NV
    J Biomed Opt; 2012 Dec; 17(12):126017. PubMed ID: 23235836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 15.6 frames per second 1-megapixel multiple exposure laser speckle contrast imaging setup.
    Hultman M; Fredriksson I; Larsson M; Alvandpour A; Strömberg T
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28700120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing.
    Wang H; Shi L; Qin J; Yousefi S; Li Y; Wang RK
    Lasers Surg Med; 2014 Aug; 46(6):470-8. PubMed ID: 24788236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The monitoring of microvascular liver blood flow changes during ischemia and reperfusion using laser speckle contrast imaging.
    Li CH; Wang HD; Hu JJ; Ge XL; Pan K; Zhang AQ; Dong JH
    Microvasc Res; 2014 Jul; 94():28-35. PubMed ID: 24799282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging depth and multiple scattering in laser speckle contrast imaging.
    Davis MA; Kazmi SM; Dunn AK
    J Biomed Opt; 2014 Aug; 19(8):086001. PubMed ID: 25089945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraoperative multi-exposure speckle imaging of cerebral blood flow.
    Richards LM; Kazmi SS; Olin KE; Waldron JS; Fox DJ; Dunn AK
    J Cereb Blood Flow Metab; 2017 Sep; 37(9):3097-3109. PubMed ID: 28112550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging microvascular flow characteristics using laser speckle contrast imaging.
    Rege A; Murari K; Li N; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1978-81. PubMed ID: 21096787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducibility of high-resolution laser speckle contrast imaging to assess cutaneous microcirculation for wound healing monitoring in mice.
    Couturier A; Bouvet R; Cracowski JL; Roustit M
    Microvasc Res; 2022 May; 141():104319. PubMed ID: 35065086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging effect on microcirculation: A multiscale entropy approach on laser speckle contrast images.
    Khalil A; Humeau-Heurtier A; Gascoin L; Abraham P; Mahé G
    Med Phys; 2016 Jul; 43(7):4008. PubMed ID: 27370119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution three-dimensional blood flow tomography in the subdiffuse regime using laser speckle contrast imaging.
    Jafari CZ; Mihelic SA; Engelmann S; Dunn AK
    J Biomed Opt; 2022 Mar; 27(8):. PubMed ID: 35362273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser Speckle Contrast Imaging: theory, instrumentation and applications.
    Senarathna J; Rege A; Li N; Thakor NV
    IEEE Rev Biomed Eng; 2013; 6():99-110. PubMed ID: 23372086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retooling Laser Speckle Contrast Analysis Algorithm to Enhance Non-Invasive High Resolution Laser Speckle Functional Imaging of Cutaneous Microcirculation.
    Gnyawali SC; Blum K; Pal D; Ghatak S; Khanna S; Roy S; Sen CK
    Sci Rep; 2017 Jan; 7():41048. PubMed ID: 28106129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.