These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21639779)

  • 61. High-speed DNA-based rolling motors powered by RNase H.
    Yehl K; Mugler A; Vivek S; Liu Y; Zhang Y; Fan M; Weeks ER; Salaita K
    Nat Nanotechnol; 2016 Feb; 11(2):184-90. PubMed ID: 26619152
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Anatomy of Nanoscale Propulsion.
    Yadav V; Duan W; Butler PJ; Sen A
    Annu Rev Biophys; 2015; 44():77-100. PubMed ID: 26098511
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Universal aspects of the chemomechanical coupling for molecular motors.
    Lipowsky R
    Phys Rev Lett; 2000 Nov; 85(20):4401-4. PubMed ID: 11060648
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dynamics of molecular motors and polymer translocation with sequence heterogeneity.
    Kafri Y; Lubensky DK; Nelson DR
    Biophys J; 2004 Jun; 86(6):3373-91. PubMed ID: 15189841
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Collective dynamics of processive cytoskeletal motors.
    McLaughlin RT; Diehl MR; Kolomeisky AB
    Soft Matter; 2016 Jan; 12(1):14-21. PubMed ID: 26444155
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-Pressure Microscopy for Studying Molecular Motors.
    Nishiyama M
    Subcell Biochem; 2015; 72():593-611. PubMed ID: 26174400
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it?
    Sirbuly DJ; Friddle RW; Villanueva J; Huang Q
    Rep Prog Phys; 2015 Feb; 78(2):024101. PubMed ID: 25629797
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Towards artificial muscles at the nanometric level.
    Jimenez-Molero MC; Dietrich-Buchecker C; Sauvage JP
    Chem Commun (Camb); 2003 Jul; (14):1613-6. PubMed ID: 12877470
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Engineering Synthetic Myosin Filaments Using DNA Nanotubes.
    Sommese RF; Sivaramakrishnan S
    Methods Mol Biol; 2018; 1805():93-101. PubMed ID: 29971714
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A microrotary motor powered by bacteria.
    Hiratsuka Y; Miyata M; Tada T; Uyeda TQ
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13618-23. PubMed ID: 16950878
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics.
    Xu Y; Jang K; Yamashita T; Tanaka Y; Mawatari K; Kitamori T
    Anal Bioanal Chem; 2012 Jan; 402(1):99-107. PubMed ID: 21845527
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Motor proteins and molecular motors: how to operate machines at the nanoscale.
    Kolomeisky AB
    J Phys Condens Matter; 2013 Nov; 25(46):463101. PubMed ID: 24100357
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Development of bio-hybrid micro machines].
    Hiratsuka Y
    Yakugaku Zasshi; 2008 Nov; 128(11):1623-30. PubMed ID: 18981698
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Micro/nanofabricated environments for synthetic biology.
    Collier CP; Simpson ML
    Curr Opin Biotechnol; 2011 Aug; 22(4):516-26. PubMed ID: 21636262
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Recording single motor proteins in the cytoplasm of mammalian cells.
    Cai D; Kaul N; Lionberger TA; Wiener DM; Verhey KJ; Meyhofer E
    Methods Enzymol; 2010; 475():81-107. PubMed ID: 20627154
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nanofluidics: high mobility in tight spaces.
    Daiguji H
    Nat Nanotechnol; 2010 Dec; 5(12):831-2. PubMed ID: 21131993
    [No Abstract]   [Full Text] [Related]  

  • 77. The ecology of technology and nanomotors.
    Armstrong MJ; Hess H
    ACS Nano; 2014 May; 8(5):4070-3. PubMed ID: 24862033
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bio-Hybrid Micro/Nanodevices Powered by Flagellar Motor: Challenges and Strategies.
    Kim JW; Tung S
    Front Bioeng Biotechnol; 2015; 3():100. PubMed ID: 26284237
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Roop Mallik: From machines to molecular motors.
    Siletti K
    J Cell Biol; 2017 Apr; 216(4):852-853. PubMed ID: 28347997
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In control of motion: from molecular switches to molecular motors.
    Feringa BL
    Acc Chem Res; 2001 Jun; 34(6):504-13. PubMed ID: 11412087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.