BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21639849)

  • 1. Stability of haloalkaliphilic Geomicrobium sp. protease modulated by salt.
    Karan R; Khare SK
    Biochemistry (Mosc); 2011 Jun; 76(6):686-93. PubMed ID: 21639849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of a solvent-stable protease from Geomicrobium sp. EMB2.
    Karan R; Khare SK
    Environ Technol; 2010 Sep; 31(10):1061-72. PubMed ID: 20718288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology.
    Karan R; Singh SP; Kapoor S; Khare SK
    N Biotechnol; 2011 Feb; 28(2):136-45. PubMed ID: 20970529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the molecular structure of cryptolepain in organic solvents.
    Prasanna Kumari NK; Jagannadham MV
    Biochimie; 2012 Feb; 94(2):310-7. PubMed ID: 21820031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural elucidation and molecular characterization of Marinobacter sp. α-amylase.
    Kumar S; Khan RH; Khare SK
    Prep Biochem Biotechnol; 2016; 46(3):238-46. PubMed ID: 26192048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101.
    Vidyasagar M; Prakash SB; Sreeramulu K
    Lett Appl Microbiol; 2006 Oct; 43(4):385-91. PubMed ID: 16965368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes in halophilic and non-halophilic proteases in response to chaotropic reagents.
    Sinha R; Khare SK
    Protein J; 2014 Aug; 33(4):394-402. PubMed ID: 25008068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene identification and molecular characterization of solvent stable protease from a moderately haloalkaliphilic bacterium, Geomicrobium sp. EMB2.
    Karan R; Singh RK; Kapoor S; Khare SK
    J Microbiol Biotechnol; 2011 Feb; 21(2):129-35. PubMed ID: 21364294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The burst-phase intermediate in the refolding of beta-lactoglobulin studied by stopped-flow circular dichroism and absorption spectroscopy.
    Kuwajima K; Yamaya H; Sugai S
    J Mol Biol; 1996 Dec; 264(4):806-22. PubMed ID: 8980687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational stability of factor VIIa: biophysical studies of thermal and guanidine hydrochloride-induced denaturation.
    Freskgârd PO; Petersen LC; Gabriel DA; Li X; Persson E
    Biochemistry; 1998 May; 37(20):7203-12. PubMed ID: 9585532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt dependent resistance against chemical denaturation of alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.
    Dodia MS; Bhimani HG; Rawal CM; Joshi RH; Singh SP
    Bioresour Technol; 2008 Sep; 99(14):6223-7. PubMed ID: 18215518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved protein phosphorescence in the stopped-flow: denaturation of horse liver alcohol dehydrogenase by urea and guanidine hydrochloride.
    Gonnelli M; Strambini GB
    Biochemistry; 1997 Dec; 36(51):16212-20. PubMed ID: 9405055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of organic solvents on the structure and activity of moderately halophilic Bacillus sp. EMB9 protease.
    Sinha R; Khare SK
    Extremophiles; 2014 Nov; 18(6):1057-66. PubMed ID: 25134948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability.
    Ibarra-Molero B; Loladze VV; Makhatadze GI; Sanchez-Ruiz JM
    Biochemistry; 1999 Jun; 38(25):8138-49. PubMed ID: 10387059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity.
    Sinha R; Khare SK
    Bioresour Technol; 2013 Oct; 145():357-61. PubMed ID: 23219691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic solvent tolerance of an α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations.
    Pandey S; Singh SP
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1747-57. PubMed ID: 22328257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature, organic solvent and pH stabilization of the neutral protease from Salinovibrio proteolyticus: significance of the structural calcium.
    Asghari SM; Khajeh K; Dalfard AB; Pazhang M; Karbalaei-Heidari HR
    BMB Rep; 2011 Oct; 44(10):665-8. PubMed ID: 22027000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of acidic amino acid residues in the structural stability of snake cardiotoxins.
    Chiang CM; Chang SL; Lin HJ; Wu WG
    Biochemistry; 1996 Jul; 35(28):9177-86. PubMed ID: 8703923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cutinase unfolding and stabilization by trehalose and mannosylglycerate.
    Melo EP; Faria TQ; Martins LO; Gonçalves AM; Cabral JM
    Proteins; 2001 Mar; 42(4):542-52. PubMed ID: 11170208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of molten globule state of papain by urea.
    Edwin F; Sharma YV; Jagannadham MV
    Biochem Biophys Res Commun; 2002 Feb; 290(5):1441-6. PubMed ID: 11820783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.