These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 21639885)

  • 1. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns.
    Sen L; Fares MA; Liang B; Gao L; Wang B; Wang T; Su YJ
    Biol Direct; 2011 Jun; 6():29. PubMed ID: 21639885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Evolution of rbcL in Orthotrichales (Bryophyta): Site Variation, Adaptive Evolution, and Coevolutionary Patterns of Amino Acid Replacements.
    Bernabeu M; Rosselló JA
    J Mol Evol; 2021 Jun; 89(4-5):225-237. PubMed ID: 33611663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gene duplication/loss event in the ribulose-1,5-bisphosphate-carboxylase/oxygenase (rubisco) small subunit gene family among accessions of Arabidopsis thaliana.
    Schwarte S; Tiedemann R
    Mol Biol Evol; 2011 Jun; 28(6):1861-76. PubMed ID: 21220760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular adaptation during adaptive radiation in the Hawaiian endemic genus Schiedea.
    Kapralov MV; Filatov DA
    PLoS One; 2006 Dec; 1(1):e8. PubMed ID: 17183712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants.
    Yerramsetty P; Stata M; Siford R; Sage TL; Sage RF; Wong GK; Albert VA; Berry JO
    BMC Evol Biol; 2016 Jun; 16(1):141. PubMed ID: 27356975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in pyrenoid morphology are correlated with differences in the rbcL genes of members of the Chloromonas lineage (volvocales, chlorophyceae).
    Nozaki H; Onishi K; Morita E
    J Mol Evol; 2002 Oct; 55(4):414-30. PubMed ID: 12355262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rubisco evolution in C₄ eudicots: an analysis of Amaranthaceae sensu lato.
    Kapralov MV; Smith JA; Filatov DA
    PLoS One; 2012; 7(12):e52974. PubMed ID: 23285238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Adaptive Evolution and Coevolution of
    Fangru N; Yuxin H; Xudong L; Jia F; Junping L; Qi L; Shulian X
    Evol Bioinform Online; 2020; 16():1176934320977862. PubMed ID: 33402814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis.
    Christin PA; Salamin N; Muasya AM; Roalson EH; Russier F; Besnard G
    Mol Biol Evol; 2008 Nov; 25(11):2361-8. PubMed ID: 18695049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genes of both subunits of ribulose-1,5-bisphosphate carboxylase constitute an operon on the plastome of a red alga.
    Valentin K; Zetsche K
    Curr Genet; 1989 Sep; 16(3):203-9. PubMed ID: 2598276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms.
    Xu HH; Tabita FR
    Appl Environ Microbiol; 1996 Jun; 62(6):1913-21. PubMed ID: 8787390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in Rubisco kinetics during the evolution of C4 photosynthesis in Flaveria (Asteraceae) are associated with positive selection on genes encoding the enzyme.
    Kapralov MV; Kubien DS; Andersson I; Filatov DA
    Mol Biol Evol; 2011 Apr; 28(4):1491-503. PubMed ID: 21172830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread positive selection in the photosynthetic Rubisco enzyme.
    Kapralov MV; Filatov DA
    BMC Evol Biol; 2007 May; 7():73. PubMed ID: 17498284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco.
    Wang M; Kapralov MV; Anisimova M
    BMC Evol Biol; 2011 Sep; 11():266. PubMed ID: 21942934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide sequence of the gene for the large subunit of Rubisco from Cyanophora paradoxa--phylogenetic implications.
    Valentin K; Zetsche K
    Curr Genet; 1990 Oct; 18(3):199-202. PubMed ID: 2123417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RbcS suppressor mutations improve the thermal stability and CO2/O2 specificity of rbcL- mutant ribulose-1,5-bisphosphate carboxylase/oxygenase.
    Du YC; Hong S; Spreitzer RJ
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14206-11. PubMed ID: 11114203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase.
    Spreitzer RJ
    Arch Biochem Biophys; 2003 Jun; 414(2):141-9. PubMed ID: 12781765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positively selected amino acid replacements within the RuBisCO enzyme of oak trees are associated with ecological adaptations.
    Hermida-Carrera C; Fares MA; Fernández Á; Gil-Pelegrín E; Kapralov MV; Mir A; Molins A; Peguero-Pina JJ; Rocha J; Sancho-Knapik D; Galmés J
    PLoS One; 2017; 12(8):e0183970. PubMed ID: 28859145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rubisco is evolving for improved catalytic efficiency and CO
    Bouvier JW; Emms DM; Kelly S
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2321050121. PubMed ID: 38442173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed Evolution of an Improved Rubisco; In Vitro Analyses to Decipher Fact from Fiction.
    Zhou Y; Whitney S
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31658746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.